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Abstract

This thesis develops and evaluates a number of new concepts and tools for the anal-

ysis of signals using variable overlapped windows and orthonormal bases. Windowing,

often employed as a spectral estimation technique, can result in irreparable distortions in

the transformed signal. By placing conditions on the window and incorporating it into

the orthonormal representation, any signal distortion resulting from the transformation

can be eliminated or cancelled in reconstruction. This concept is critical to the theory

underpinning this thesis.

As part of this evaluation, a tensor product based general N-point fast Fourier trans-

form algorithm was implemented in the DOD standard language, Ada. The most prevalent

criticism of Ada is slow execution time. This code is shown to be comparable in execution

time performance to the corresponding FORTRAN code. Also, as part of this thesis, a

new paradigm is presented for solving the finite length data problem associated with filter

banks and lapped transforms. This result could have significant importance in many Air

Force applications, such as processing images in which the objects of interest are near the

borders. In addition, a limited number of experiments were performed with the coding of

speech. The results indicate the lapped transform evaluated in this thesis has potential as

a low bit rate speech coder.

ix



DIGITAL SIGNAL PROCESSING USING LAPPED

TRANSFORMS WITH VARIABLE PARAMETER

WINDOWS AND ORTHONORMAL BASES

L Introduction

Digital signal processing is a vast engineering discipline primarily concerned with

the representation of signals as a sequence of numbers or symbols, and the subsequent

processing of these numbers toward some goal (25). One purpose for this processing is to

transform a signal into a form which is in some sense more effectively transmitted as part

of a communications system. Decomposition is one method of representing a signal in this

more desirable form, while the recovery of the signal from this form is called reconstruction.

Figure 1.1 depicts such a system. The actual form of the decomposition and reconstruction

algorithms used in this thesis will be outlined in the next chapter.

Input Signal Decomposition Signal Transmission Reconstruction Output Signal
[Algorithm - Algorithm

Figure 1.1. Communications System

1.1 Windows in Digital Signal Processing

The Fourier transform is indeed the cornerstone of modern signal processing and

involve,, representation of a signal using an orthogonal sinusoidal basis set. Iii practice,

ev ry signal to be processed must be of finite length, and this length defines the minimum

frequency spacing required for adjacent basis elements of a Fourier representation. When

the data is transformed, any frequencies not commensurate with one of the basis frequen-

cies will exhibit non-zero projections on all basis frequencies (14:52). This phenomenon
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is known as spectral leakage. If the primary goal of a system is harmonic ,dnalysis, spec-

tral leakage is especially incommodious and can be lessened through the use of windows

specifically designed for this purpose. Harris provides a thorough discussion on this sub-

ject in (14). When windows are used as a step in decomposing a signal for eventual

recovery, however, the properties and parameters of the windows to be used need to be

quite different from those designed specifically to limit spectral leakage. While spectral

leakage may be apparent in the decomposed signal, the primary concern of the decompo-

sition/reconstruction system is proper reconstruction of the original signal. Toward this

end, Princen and Bradley (27) introduced a technique whereby the window is an integral

part of the orthonormial basis. This less traditional use of '.-indows will be shown to be an

important concept toward the development of this thesis.

1.2 Perfect Reconstruction

Any algorithm which is developed as part of a decomposition/reconstruction scheme

attempts to reconstruct a signal which is as close as possible to the original input. If

all decomposition coefficients are used in the reconstruction, and the reconstructed signal

is an exact copy (with the possibility of a delay) of the original signal, then the system

satisfies the perfect reconstruction property (35). Satisfying this property is an important

requirement for any decomposition/reconstruction scheme (27:1153), so that coding dis-

tortion resulting from compression techniques have a minimal impact on reconstruction of

the original signal.

1.3 Research Goals

Several goals were established which guided the research of this thesi \' of the

goals in some way involv, lie Generalized Lapped Orthonormal Transform (GLOT), which

will ? outlined in detail in Chapter 2. The~e goals are outlined below:

1. Implement the GLOT in software and validate the theory outlined in Chapter 2,

including perfect roronstruction using variable size windows an(d overlap.
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2. Investigate use of the GLOT in processing finite length signals without the boundary

effects associated with traditional approaches.

3. Investigate use of the GLOT in speech processing. Specifically, determine the com-

pression capability of the GLOT using various spectral compression techniques.

The first goal is necessary because this is the first research regarding the GLOT. After

implementing the complete software program, perfect reconstruction will be validated for

different size windows and overlap. Processing finite length signals often results in dis-

tortions at the signal boundaries. The second goal is to propose a method of achieving

perfect reconstruction for this type of signal. Finally, the third goal is a logical extension

of previous work invloving speech and lapped transforms, most notably by Malvar (18).

1.4 Speech Compression - An Application

One area which will be investigated is compression of speech data, since something

other than a simple analog-to-digital conversion is required to make transmitting speech

economical in terms of bit rate. Compressing speech requires a three way trade-off among

the goals of preserving intelligibility and quality, limiting the bit rate, and minimizing com-

putational complexity (26:225). The impact of any compression technique on these three

often incompatible goals must be continually assessed in determining the most promising

compression algorithm. Transform coding is one of the major low bit rate speech cod-

ing techniques being investigated by the military, since channel bandwidth is extremely

limited in many strategic and tactical systems (38). This thesis will include preliminary

experiments using the GLOT that will be useful in describing the design space for a li)w

bit rate speech encoder.

1.5 Outline

This chapter provides an introduction to this thesis, describing the goals of this thesis

and particular field of research within the vast discipline of digital signal processing. The

background and theory which form the basis for this thesis, up to and including the GLOT,

is outlined in Chapter 2. Chapter 3 provides a complete derivation and analysis of an Ada
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based fast Fourier transform algorithm, the most significant coding effort of this thesis.

Chapter 4 provides the link between the theory of Chapter 2 and the application of this

theory to various signal processing and communications problems, including finite length

processing, and speech processing and compression. Finally, a summary of key results, and

a recommendation for follow-on research areas, are outlined in Chapter 5.
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H. Background

In (33), Suter and Oxley provide the derivation of a new method for the decompo-

sition and reconstruction of signals based on variable parameter windows and weighted

orthonormal basis functions. The aspect of this derivation which is different from the con-

ventional methods of transform coding is that the orthonormal basis used to represent the

signal of interest is actually the product of a window and some type of orthonormal function

(in this application, a sinusoidal function). As described in Section 1.1, this technique was

developed to overcome some of the limitations of finite length processing. Malvar (18) (21)

has investigated such a method, called the Lapped Orthogonal Transform (LOT), and

adapted this approach to speech signals to overcome what he has termed "blocking ef-

fects." Combining the window and function to form an orthonormal basis leads to an

overlap of adjacent intervals, and Malvar limited his analysis to constant length windows

with a 50/k% overlap, for positive integer k (19). He was able to eliminate the "extrane-

ous tones" in speech resulting from the conventional windowing scheme (21:553). Coifman

and Meyer (8) generalized Malvar's analysis to include variable size windows. Suter and

Oxley's approach is based in part on these developments, and further generalizes previous

work to include variable bases (including non-sinusoidal bases), variable length windows,

variable overlap between adjacent windows, and variable window amplitude. They also

provide a computationally efficient algorithm (33). The transformation outlined by Suter

and Oxley will be mathematically defined in the next section.

Although not an integral part of this thesis, it is important to note that there are

intimate relationships between multirate filter banks, lapped orthogonal transforms, and

wavelets (2) (9) (20) (35).

The initial implementation, which forms the basis for this thesis, is restricted to a

sinusoidal basis with a constant amplitude window of variable size and a variable per-

cent overlap with adjacent windows. These initial assumptions will be used to tailor the

derivation of the transformation outlined in (33) to the work encompassed herein.
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2.1 The Generalized Lapped Orthonormal Tranqform

2.1.1 Mathematical Definition The following is a formal definition of the lapped

transform used in this thesis.

Let N represent the natural numbers and Z represent the integers.

Let {alj E Z} be a sequence such that aj -- oo as j -. oo and a, - -oo as j o-c .

Let {ejj Ij E Z} be a sequence such that E1 > 0 and cj + cj+l <_ aj+l - aj.

Let {fj,klk E N} be an orthonormal set on [aj, aj+i] with respect to weight pj(x).

Let wj(x) be a window.

Then, define the Generalized Lapped Orthonormal Transform (GLOT) T : L2 ( ) -_ 2(Z x N).

a J+l +cI+i

[Ts]j,, = , +f.-• s(x)uj,,k(x)dx, (2.1)

where Ujk(X) = Wj(a)f,,k(X) F,(xW.

The form of w,(x), f,,k(x), and Pj(x) used in this thesis will be given when describing

the signal decomposition in the following sections.

2.1.2 Signal Decomposition The decomposition portion of the GLOT involves, at

the highest level, three main steps in the order outlined below:

1. Multiplication of the Signal by a Window

2. Folding of the Data

3. Performing a Fourier Transform

Each of these steps will be outlined followed by a summary of the full forward decomposi-

tion. First, however, some notation must be provided. Each interval or block of data to be

processed will span the closed interval [aj,aj+l] as shown in Figure 2.1. An orthonormal

basis, {fj.,k(x)Ik E N}, will be defined on this interval. This orthonormal basis must satisfy
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as - fj aj aj + (j aj+l - cj+l aj+i aj+l + cj+l

Figure 2.1. Partitioned Axis

the orthonormality property (33), given in Equation 2.2:

J fjk()f(x)pj(x)dx = 6k,. (2.2)

where j indexes the current interval, fj,k(X) specifies the kth basis function within the jth

interval, and pj(x) specifies a weight function over interval j. The weight function (and its

extension, Pj(x)) for a sinusoidal basis function is unity for all x. Because only a sinusoidal

basis was implemented in this thesis, the weight function may be omitted from further

equations.

The orthonormal basis used in this research was the generalized sinusoidal basis of

Coifman and Meyer (8) defined by fj,k(x) on the interval [aj,aj+l]:

fik(x) = a+2- a, sin (r(k + 1/2) -a+ji - ajl) (2.3)

The first three sinusoidal basis functions for k = 0, 1,2 over a normalized interval are

depicted in Figure 2.2. Next, the odd and even extensions of fj,k(x) are defined on

(a3 - j, aj) and (a 3+ 1, aj+l + j+i ), respectively, resulting in a new function f.,k(x), defined

by:

0-0 Kc <x < a - cj

.3 ,k(x) = - sin (rk 1/2)2[ •]' a3 - c. < x < aj+l + j+l (2.4)
2 ks r-3a + 1

0 ,aj+, + cj+l < x < oo.
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k=

k=2

0 0.5
Xj,k

Figure 2.2. Sinusoidal Basis Functions: k = 0, 1,2 over Normalized Interval

To guarantee that the interval (aj,aj + ej) does not overlap with (aj+l - Ej+l,aj+l), it

is required that Ej + cj+l •_ aj+l - aj. That is, if ej = cj+i, then the maximum value of

Ej is 50% of the length of the window. A general proof that the product of the window

and function (where both satisfy given criteria) form an orthonormal basis may be found

in (33).

The goal of this algorithm is to derive a set of coefficients which represent the data

(coefficients which can then be used to reconstruct the original signal). In other words, the

signal of interest will be expanded in terms of an orthonormal basis, {u3,klj E Z, k E N}.

The orthonormal basis has been derived as the product of a window, wj, and an expanded

orthonormal basis function, f.,k(x). The signal expansion in terms of the resulting or-

thonormal basis (33) is given by:

S(X)= ajOkUjk(X). (2.5)
jEZkEN
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The forward transformation yields coefficients xj,k, which are defined specifically by:

a,+ 1 +fj+I

= k = s(x)w)(X)fjk(x)dx. (2.6)

where s(x) is the data to be represented, and j,•k (x) is as defined previously in Equation 2.4.

The window function, wj(x), will be defined in the following section.

2.1.2.1 Multiplication of the Signal by a Window To uniquely specify the

GLOT, a window must be defined. The window must have certain properties to ensure

that the product of this window and the expanded orthonormal basis function also form

an orthonormal basis set. Properties first defined by Coifman and Meyer (8) include:

(a) w 1(z) = 1 for x E (aj +,,a+I - +,)

(b) wj(x) = 0 for x ý (a. - ej,aj+l + cj+i) (2.7)

(c) w1(a1 -ca) = w1 -l(aj + a) for 6 [-fscj]

(d) w.(x) + w_.1 (x) = 1 for x E [a, - Ej,aj + EJ]

One window satisfying these properties (see Suter and Oxley (33)) is given by:

0 ,-0 < x < as-e,

sin Ix - [aj - cj1 , aj - e < x < aj + j

wj(X)= 1 , a + .j <x<a,+,-§+l (2.8)

cos •( {X-- [aj+l - , aj+l - Ej+l < x < aS,+1 + •j+l

0 , aj+l + c-+l < x < oc.

This sinusoidal window was used for all research in this thesis and its asymmetrical

overlap with the two adjacent windows is depicted in Figure 2.3. For these windows, the

polynomial within the braces is an affine function of x. Coifman (7) has developed other

windows where the polynomial within the braces is a higher degree polynomial function

of x. Another window satisfying all properties in Equation 2.7 which has the additional

advantage of being differentiable at x = aj - 4j and x = aj+l + Ej+l is defined by Suter

and Oxley in (33).
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0.5 ,Vj-l ) ...
w~j (X)

wj+l(x) . .

I I I I

as - cJ ai aj + CJ a+l -- j+l aj+l aj+l + ,j+I

Figure 2.3. Example Window

2.1.2.2 Folding of the Windowed Data An important step in GLOT (33) is

the folding (and unfolding discussed as part of the reconstruction) of the data to form a

new vector, hj, as shown in Equation 2.9 below:

S(x)w,(x) - s( 2 aj - x)wj(2as - x) , as x < aj + Es

h ) (x) S(x) , aj + c < x < aj+l - cj+l (2.9)

s(x)wu(x) + s(2aj+l - x)uwj( 2az+l - x) , aj+l - (j+l • x < as+,.

The folding is a natural consequence of the mathematical proof for the orthonormal ba-

sis (33), and has several important implications. Consider the interval (a, - E,,aj + Cj),

shown in Figure 2.4. To demonstrate the folding, the value hj(a, - 1) will be a sum of the

original data at a, - 1 and a, + I multiplied by the appropriate window value (in this case,

the window value indicated by arrows in Figure 2.4). Data in the interval (aj - (j, a, + Cs)

will be included in the processing of data in intervals j and (j - 1). Recall that the

windowed overlapped orthonormal basis is designed to eliminate edge effects. The theory

predicts it will be possible to reconstruct the data points in this region as a weighted sum

or difference of two coefficients from adjacent intervals. The reconstruction algorithm will

2-6



I I I I _

Wj (X)

Figure 2.4. Folding of Data

be outlined in more detail in the Section 2.1.3. Henceforth, all subsequent processing of

the data in the jth interval can be confined to [aj,aj+i], even though this processing is

affected by a larger number of data points, [aj - ij, a3 +. + Ej+l]

2.1.2.3 Fast Fourier Transform A fast Fourier transform (FFT) is employed

in both the decomposition and reconstruction stages of the GLOT. The form of the FFT

used is given by:
1 M,-1 2riM

Gj,= 1- M gj,/eM' (2.10)
1=0

where vector Gj,k is the one-dimensional transform of vector gj,i, and AMj is the length

of these vectors. Normally, this form is considered an inverse FFT based on the positive

argument of the exponential kernel. The inverse FFT used in both the decomposition

and reconstruction is of this same form, and it will subsequently be refered to simply as

an FFT. Normally, the resulting complex vector from the FFT has significant real and

imaginary parts. In the decomposition, only the real portion of the FFT output vector

contains any information. In the reconstruction, the complex FFT output is scaled and

only the imaginary portion of the scaled output vector contains any information.
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2.1.2.4 Decomposition Algorithm Summary With the major steps in the de-

composition algorithm outlined, a summary of the full forward transformation can be

provided. The theory (33) allows arbitrary spacing between samples. This spacing has

been assumed to be unity so that xj = aj + I for I = 0, 1, ... , Nj in the following algorithm

summary:

(1) Obtain data s(xj,,) for aj -- •j x j,x (zj+l + cj+l,

that is, I = -Mj,..,-1,O, 1,-,Nj+ Mj+,.

(2) Multiply s(xj,,) by window wj(xj,2 ) for 1 = -Mf,...,-1,0,1,..., Nj + Aj+.

(3) Fold the sequence by defining

S(xjI)tj(xj,I) - s(2aj - xj,!)wj(2aj - xj,[) , aj _< Xj < aj + cj

Hj,t I s(xj,1 ) ,aj + (j < xj,l < aj+l - ij+l

s(xj,I)wj(xj,,) + .s(2aj+l - xjI)wj(2aj+I - xj,t) aj+, - Cj+I < xj,1  aj+l

for 1= 0, 1, ... , N.

(4) Define new array

,3j,, = Hij sin(2-) for 1=0,1,..., Nj

(5) Define the even extension of Op,

= 0<I<Nj-1

0j,2N,- , Nj < l < 2Nj -1.

(6) Perform an FFT of length 2Nj on /j,3 and define Dj,k by:

Ojek (= R 1 I i22rki/2N,
2T E•
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(7) Interpret the results of the FFT

aj,o = 2 Nj Dj,o

ai,k = aj,k-1 + 2 2NjDj,k

The coefficients after decomposition, aj,k, will be referred to as spectral coefficients

or coefficients throughout this thesis. In the case of the speech application, any further

processing to achieve compression of the signal will be performed at this stage in the

spectral domain.

2.1.3 Signal Reconstruction The reconstruction algorithm is the mathematical in-

verse of the decomposition, although the reconstruction implementation does not mirror

a reverse ordered decomposition. The reconstruction (33) involves three steps as detailed

below:

(1) Define odd extension of aj,k by:

_ aj, k 0O<_k <_N -1I
Okj,k =-

--0j,2N,-k-1 , N <_ k < 2Nj - 1

(2) Perform an FFT of length 2Nj on 5jk for k =0, 1, 2,...,2N, - 1 and define Hjj by:

2N,-• Z i z 1 •2ýkl
Hj,1 = 2NIm (e&r [i 2 kej")-

2 k=0 
1

(3) Reconstruct the signal on the interval [aj,aj+1 ] at the data points xj,= aj + 1 for

I = 0,1,2,...,Nj by using

2w-(xj)xj, = aj

w,(2aj - xj,1)H,-lN,-,-. + wj(xj,1 )HJ,, aj < xsj < aj + cj

Hs,, aj + cj • Xj, I :- a,+i - +

wj(xj,,)Hj,l - wS(2aj+l - Xj,I)Hj+I,N,- , aj+1 - E,+i < xjj < aj+l
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The values Sj,j will approximate the signal evaluated at xj,,, that is, Sj,-- s(xj,,).

There are a few noteworthy differences as compared to the decomposition algorithm.

First, only the imaginary (rather than the real) portion of the complex scaled FFT result

is of interest. Second, the unfolding and division by the window are combined in one step.

Notice that each reconstructed point in a region of overlap requires the contribution of two

different windows and coefficients. This is consistent with the fact that spectral coefficients

were derived after folding windowed data points from adjacent windows (see Equation 2.9

above).

If all spectral coefficients from the forward transformation are used in the reconstruc-

tion, perfect reconstruction should result. In this case, Sj,1 = s(xj,1 ).

2.2 Finite Length Signal Considerations

A common signal processing problem involves proper reconstruction of finite length

signals. When performing sub-band analysis using multirate filter banks, for example, the

total amount of data required in the channel is greater than that of the finite length input

(and reconstructed output) (16:162). Assumptions must be made about the data beyond

the signal extent, which may create errors in the reconstructed output. The most common

methods being investigated are various signal extensions (37), including zero padding,

periodic extension, symmetric extension, and boundary value replication. In practice,

all signals must be of finite extent. This problem is especially significant, however, in

applications such as image coding (1) (5) (23), time-frequency analysis (17), and matrix

computations (3) (4).

The GLOT is also susceptible to this problem, since overlapping is employed and

data on [aj - cj,aj+l + cj+ 1 ] is required to process and reconstruct data on [aj,aj+u].

There is currently no lapped-transform based solution to processing a finite length signal

which achieves perfect reconstruction withoul storing additional data outside the interval

of interest, although some approaches based on approximations have been presented (10).

This section will outline a solution to the problem which employs the GLOT.
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Figure 2.5. Periodically Extended Interval [aj,aj+l]

Before discussing a solution to the finite length signal problem, three goals will be

outlined. First, perfect reconstruction of the entire signal is required. This goal assumes

that the data at the boundaries must be preserved as well as the rest of the data. Second,

the transform employed should be nonexpansive (5), meaning no etra data must be stored

outside the interval [aj, a+ 1]], thereby conserving data storage costs. Third, the complexity

of the method should be no more than for the GLOT outlined in the previous sections.

These three goals will be lised to measure the success of the solution provided below.

Although no additional data points will be required, it will be ,convenient to initially

visualize the periodic extension of the window and data before and after the finite interval.

Now, treat the boundary points of the interval [aj,aj+1 ] as midpoints of the transition

regions of the same percent overlap. As illustrated in Figure 2.5, there is a correspondence

between the overlap at the two boundaries. In other words, the following window segments

are identical and span an interval where the data is also identical: a and e, b and f, c and

g, d and h. Because of this correspondence, only the window segments c, d, e, and f

and data from aj to aj+l are required to reconstruct data on [aj,aj+l]. For example, the

product of window segment a and the data on [aj - cj,aj] can be replaced by window
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segment c and data on [aj+1 - ci+l,aj+l] in tlie GLOT equations given above. This

satisfies the second goal of a nonexpansive transform. It should be noted that perfect

reconstrurtion can be achieved by storing data other than the periodic extension outside

the interval of interest. One example would be to zero-pad outside [aj,aj+±]. Perfect

reconstruction could be achieved, however, there would be an additional requirement to

store the zeroes at specific locations. There is nothing inherent in this method which limits

the reconstruction capabilities of the GLOT, including the potential discontinuity in the

data at the boundary. Also, the complexity of this solution is no greater than that for

the GLOT. All of the same transformation steps are followed, but with data on different

intervals. This solution should satisfy all three goals outlined above. Not only is this idea

a fairly simple theoretical concept, it will be shown in Chapter 4 to be a very practical

approach to solving the problem.

2.3 Independent Interval Processing

The process outlined above solves the problem of processing the first and last seg-

ments of a finite length record of data. Thi .oncept could be expanded and applied to

each interval of data, rather than just at the signal boundaries. If the window and data in

the jth interval were periodically extended as shown in Figure 2.5, then processing the jth

interval would be independent of the data in either adjacent window. Such a system would

provide a decomposition/reconstruction algorithm achieving perfect reconstruction on an

arbitrary length data, without requiring any overlap between adjacent intervals. This type

of nonexpansive signal processing has not previously been defined for any lapped trans-

form. Chapter 4 will provide the results of using the GLOT for this type of independent

interval processing.
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III. Development and Analysis of an Ada Based Fast Fourier Transform

The most obvious and important initial coding task was development of a fast Fourier

transform (FFT) routine for a general number of input points, in accordance with step 6,

Section 2.1.2.4, and step 2, Section 2.1.3. This routine was seen as the most formidable in

terms of software implementation, and was consequently the highest coding priority. This

chapter outlines the implementation of the FFT used in this thesis, and is based on the

work by Raduenz, et al. in (29).

3.1 Choice of a Software Language

Because the choice of a language in thesis software development is significant, a few

remarks on this choice are in order. All software developed during the course of this thesis

was programmed in the high-level language Ada. Ada was designed and developed by

the Department of Defense in the late 1970's and early 1980's to ensure sound software

engineering concepts were employed in the development of military systems. The Ada

advantages of modularity, readability, testability, and reliability were paramount to the

success of the coding phase of this thesis. Further, follow-on students or any interested

programmer may use the packages developed for this thesis, even by calling them from

another language such as C or FORTRAN.

3.2 Background

Using tensor analysis, Ferguson (12) presented an elegant derivation of Glassman's

(13) general N fast Fourier transform (FFT), together with a concise FORTRAN program

to implement this FFT. Moreover, most FFT routines that were developed after Ferguson's

work (12) were and continue to be based on tensor analysis (see, for example Van Loan

(36)). Nonetheless, most FFT routines commercially available today operate on a vector

of length N = 2 m, where m is an integer. The GLOT, however, requires a wider choice of

N for general implementation. One of the practical advantages of Glassman's routine is

that it can be used in digital signal processing applications for analysis of data of arbitrary

length, without the coding complexity of Singleton's case driven routine (30). The principal

3-1



disadvantage of Glassman's routine is that it requires an N-Vector working space. When

programmed in Ada, however, the implementation details of this and other aspects of the

code can be hidden in the body of an FFT package (making them transparent to the user),

as shown in the next section.

Industry and laboratories have been somewhat lethargic about commercial use of

Ada, although today the market approaches $1.5 billion annually (11). The military has

also been criticized for allowing limitless waivers and generally impeding the transition

to Ada. Many feel Ada's main disadvantage is slow execution time, thereby rendering

it not applicable to many engineering applications. After delineating the conversion of

Ferguson's FORTRAN program to Ada, an execution time comparison will demonstrate

that Ada execution time is competitive with Ferguson's FORTRAN FFT execution time.

3.3 Source Code Comparison

Figure 3.1 is a listing of Ferguson's FFT subroutines. These subroutines were stored

and compiled as separate files. Figure 3.2 gives the analogous Ada code in a FFT package

specification and body. The source code in the two languages is dissimilar in a few notable

areas. First, the FORTRAN program allows implicit assignment from a single index array

to a three index array within the Glassman subroutine. This assignment is handled by the

compiler. In Ada, the same assignment could be coded as a triple nested loop, assigning

each element in Data- Vector to the appropriate location in a new three dimensional vector.

A faster and more elegant assignment can be used, however, if the appropriate element in

the single index vector can be accessed based on the values of the three indices. It can

be shown that some variable Data- Vector_3Index(i., j, k), for i E [1, A],j E [1, B]. k E [1, C]

can be represented as DataVector((i - 1) * B * C + (j - 1) * C + k) where A. B and C are

the integers passed to Glassman. The above expression can be simplified to

DataVector(((i - 1) * B + (j - 1)) * C + k). (3.1)

The assignments shown in Figure 3.2 were derived by substituting the appropriate indices

into equation 3.1. When writing to the vector Temp, which becomes the output, the indices
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of the three index vector used in Figure 3.1 match the order of the nested loops, and this

allows for an Ada assignment via a simple counter variable.

Second, the user of the Ada version need only pass a complex data vector and boolean

inverse operator to FFT. Work space is established within the appropriate subprocedure,

and the vector length N can be determined using Ada array attributes, thereby eliminating

two of the passed parameters. Because work space in Ada is not defined at the top level,

there is no need to call Glassman using a boolean operator and alternating if statements

(passing either U or Work as the input vector), as is done in the FORTRAN routine. The

only reason to pass two arrays would be to maintain integrity of the input data while

passing data out as a separate vector.

Finally, the Ada code contains package calls to Complex-Package, Type-Package, and

Math for standard complex number manipulations, global type declarations, and mathe-

matical operations respectively, as well as a 1/N scaling at the end of subprocedure FFT

for the inverse transform. All timing analysis was performed using the forward transform

so no scaling would be invoked in either routine. In terms of floating point operations, the

Ada and FORTRAN routines are equivalent.

3.4 Execution Time Comparison

Execution times for the two programs were compared using CPU time from the Unix

time command. Although elapsed CPU times are measured to the 50th second with this

facility, the exact execution time for the FFTs is not of great importance and is highly

machine dependent. The desired result was a relative measure of FORTRAN and Ada

execution time for digital signal processing algorithms such as the one used here.

Runs were made on a Sun SPARCstation 2 (operating system version SunOS 4.1.2),

with very light additional load. The software packages used in this comparison were Sun

FORTRAN (Enhanced FORTRAN 77) Version 3.1.1 and Verdix Ada Version 6.0.3(d). The

results are given in Table 3.1. Notice that executables were developed which provided no

output or wrote to a file to isolate the effects of I/O in the comparison. As is shown, the

Ada execution times are comparable to the FORTRAN execution times.
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subroutine FFT-Sub (N, U, Work, Inverse)
integer N
complex U(N), Work(N)
logical Inverse
integer A, B, C
logical Inu
A =1
B =N
C =1
Inu =. true.

C
10 if (B .GT. 1) goto 30

if (Inu) return
do 20 i = 1, N

U(i) = Work (i)
20 continue

return
30 A=C*A

do 40 C = 2, B
if (mod(B,C) EQ. 0) go to 50

40 continue
50 B=B/C

if (Inu) call Glassman(A, B, C, U, Work, Inverse)
if ( Not. Inu) call Glassman(A, B, C, Work, U, Inverse)
Inu = .Not. Inu
go to 10

end
C-----
C

subroutine Glassman (A, B, C, Uin, Uout, Inverse)
integer A, B, C
complex Uin(B,C,A), Uout(B,A,C)
logical Inverse

C
C This subroutine is called from FFTSub
C

Complex Delta, Omega, Sum
Twopi = 6.28318530717958
Angle = 7wopi / float(A*C)
Delta = CMPLX(Cos(Angle), -Sin(Angle))
if (Inverse) Delta = CONJG (Delta)

C
Omega = CMPLX(1.0,0.0)
do 40 IC = 1, C

do 30 [A = 1, A
do 20 IB = 1, B

Sum = Uin(IB,C,IA)
do 10 JCR = 2, C

JC = C + 1 - JCR
Sum = Uin(IB,JC,IA) + Omega * Sum

10 continue
Uout(IB,IA,IC) = Sum

20 continue
Omega = Delta * Omega

30 continue
40 continue
C

return
end

Figure 3.1. Fortran Code for FFT Subroutines
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with ComplexPkg; use Complex.Pkg;
with Type.Package; use Type-Package;
with Math; use Math;

package FFT-Pack is
procedure FFT ( FFT..Data in out Complex-Vector

Inverse-Transform in boolean
end FFT.Pack;

package body FFT.Pack is
procedure Glassman ( A, B, C in integer;

Data-Vector in out Complex-Vector
Inverse-Transform in boolean ) is

Temp ComplexVec tor(I..A*B*C);
Counter,JC integer := 0;
Two.Pi constant float := 6.28318530717958;
Del, Omega, Sum Complex;
Angle float;
C..Plus-1.. integer := C + 1;

begin
Angle Two.Pi / (float(A*C));
Del Complex_-Of((Cos(Angle)), (-(Sin(Angle))));

if (Inverse-Transform) then
Del := Conjugate(Del);

end if;
Omega := ComplexOf( 1.0,0.0);

for IC in 1..C loop
for IA in L..A loop

for IB in 1..B loop
Sum := Data-Vector((((IA - 1).C + (C-I)) * B) + IB);
for JCR in 2..C loop

JC := C-Plus-J - JCR; - - No need to add C + 1 each time through loop
Sum DataVector((((IA - 1)*C + (JC - 1)).B) + IB) + (Omega * Sum);

end loop; - - JCR
Counter := Counter + 1;

Temp(Counter):- Sum;
end loop; - - IB
imega := Del * Omega;

end loop; - - IA
end loop; - - IC
Data-Vector := Temp; - - assign output back to Data-Vector

end Glassman;

procedure FFT ( FFT.Data in out Complex-Vector;
Inverse-Transform in boolean ) is

A integer 1;
B : ;-'eger FFT..Data'length;
C a,. -ger 1;

begin - - FFT
while (B > 1) loop - - define the integers A, B, and C

A C * A; - - such that A*B*C = FFTData'length
C 2;
while (B mod C) /= 0 loop

C :=C + 1;
end loop;
B := B/C; - - B = I causes exit from while loop

Glassman (A,B,C, FFT-Data, Inverse-Transform);
end loop;

if Inverse-Transform then - - optional 1/N scaling for inverse transform only
for i in FFT..Data'range loop

FFT-Data(i) := FFT-Data(i) / float(FFT..Data'length);
end loop;

end if;
end FFT;

end FFT.Pack;

Figure 3.2. Ada Code for FFT Package
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No Output Write to File
Average CPU Time in Seconds

Points Ada FORTRAN Ada FORTRAN
500 0.1 0.1 0.1 0.3
1000 0.2 0.3 0.3 0.6
2000 0.4 0.6 0.8 1.3
3000 0.7 0.9 1.2 1.9
4000 0.9 1.2 1.7 2.6
5000 1.2 1.5 2.2 3.3
6000 1.5 1.8 2.7 3.8
7000 1.8 2.2 3.2 4.6
8000 2.0 2.5 3.6 5.2
9000 2.3 2.8 4.1 5.8
10000 2.6 3.2 4.6 6.5
11000 3.2 3.8 5.5 7.4
12000 3.1 3.8 5.6 7.8
13000 4.0 4.7 6.7 9.0
14000 3.9 4.7 6.9 9.3
15000 4.0 4.9 7.2 9.9

Table 3.1. Ada vs Fortran Execution Time Comparison

Although run times were roughly the same, the Ada compilation time was noticeably

longer than that for FORTRAN. One reason for this extended compilation time is that

Ada was developed as a strongly typed language, and performs numerous compilation

checks to minimize run time errors. Ada also performs run time checks such as numeric

range checking, which can be disabled using the -S command. Because Sun FORTRAN

3.1.1 does not perform this level of run time checking, the final Ada executable used in this

comparison was compiled with run time checks disabled. A significant speed increase could

be realized in the FORTRAN program by compiling with the -fast or -fnonstd commands,

however, this compilation results in floating point outputs which do not conform to IEEE

standards. Thus, neither the -fast FORTRAN nor the -O Ada optimization options were

used during compilation. It is important to note that the accuracy of both programs

outputs was comparable, since the outputs agreed down to the roundoff of the machine.
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3.5 Summary

The FFT is the most involved algorithm in the GLOT. Coding this algorithm effec-

tively in Ada provided confidence that the full transform could be implemented in Ada.

The execution time comparison indicates that Ada is competitive with FORTRAN and is

a viable language for other digital signal processing applications as well.
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IV. Methodology

Programming a general N-point FFT routine was seen as the first priority software

coding task, as discussed in Chapter 3. Before a full software implementation could be

achieved, however, a prototype system was developed to test the theory of the GLOT.

This chapter provides the link between theory and application, ranging from initial imple-

mentation of a prototype system to application of the GLOT to current signal processing

problems. Personal Computer - Digital Signal Processing (PC-DSP), discussed below, was

the first method used to test the GLOT. The program was used as a fast prototype, and

aided in development and testing of the mathematical theory. The next test phase involved

a computer program implementing the GLOT. The development of this program also relied

heavily on the previous PC-DSP results. Some variations of the GLOT were implemented

and tested, each working toward a different goal. Finally, the GLOT was applied to digital

speech processing. The main focus of this segment of the research was to determine the

minimum number of coefficients needed to reconstruct a quality reproduction of the input

signal, while maintaining an acceptable computational penalty. The later portion of this

chapter outlines the various techniques employed toward this end.

4.1 A Prototype System - PC-DSP

After carefully delineating the theory behind the GLOT, the first step in the evo-

lutionary process of validating the theory was to develop a prototype system. The tool

chosen for this purpose was Personal Computer - Digital Signal Processing (PC-DSP),

an interactive menu-driven software package for use in common digital signal processing

tasks (24). This program performs many of the functions required to test the GI ')T, such

as fast Fourier transforms (FFTs), point-by-point vector multiplications and additions,

vector scaling, and the design and analysis of digital filters. Limitations which constrained

the program included the inability to loop or perform an FFT on data of length other than

2 m, where m is an integer. Another disadvantage of the program was that each step had to

be manually performed for each window of each data set. Some automation was available

by using PC-DSP macro programs, where multiple PC-DSP commands could be loaded
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and executed from a file. These macro programs also had limitations, mainly involving

insufficient memory for this application. In spite of these limitations, prototyping using

PC-DSP provided the ability to determine the feasibility of the GLOT, and also limited

the time required to code the eventual algorithm in a high-level language.

The signal shown in Figure 4.1 was chosen to test the analysis and synthesis al-

gorithms. It consists of a sinusoid, a decaying exponential, a growing exponential, and

another slowly varying sinusoid in the first through fourth partitions defined by the fol-

lowing equations:

[sin(O.041x) 0 < X <511

s(x) 0.862exp[-O.006(x - 512)] , 512 < x < 1023 (4.1)

O.0402exp[O.006(x - 1024)] , 1024 < x < 1535

0.862 + 1.5sin[O.03(x - 1536)] , 1536 < x < 2048

The window boundaries were chosen to be 512 and 1536, resulting in three analysis intervals

of 512, 1024, and 512 points respectively. The window sizes were specifically chosen to be

a power of two so that no zero-padding would be required to perform the subsequent FFT.

Such padding would have created interpolation errors. In an effort to gain some insight

into the effects of amount of window overlap on the reconstruction of the signal, the overlap

at data sample 512 was 51 points (5% of the larger window) and the overlap at 1536 was

102 points (10% of the larger window).

The spectral coefficients obtained after performing the forward GLOT are given in

Figures 4.2 through 4.4. Notice that only the first thirty coefficients of each window are

shown. Although the transform yields as many coefficients as there are data points in the

window, the coefficients beyond thirty for this signal were essentially zero. Only the first

thirty coefficients were plotted to produce the coefficients of interest.

Intuitively, the spectrum plots are what, would be expected for each analysis interval.

The GLOT can be roughly equated to a Fourier transform, as both are based on represen-

tation of a signal using sinusoidal basis functions. Figure 4.2 has a strong 6th coefficient

which results from the sinusoidal basis corresponding to the frequency of the sinusoid in
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Figure 4.1. PC-DSP Input Signal

the first window. Because the frequency of this sinusoid and the nearest basis function

frequency do not match exactly, other low frequency bases are also noticeable but of a

lesser magnitude (see Section 1.1). Another source of noticeable low frequency spectral

components in the first window is the overlapping window. A small portion of the low

frequency exponential is characterized by the coefficients in the first window.

The signal in the middle segment of Figure 4.1 is slowly varying, and the correspond-

ing spectrum (Figure 4.3) has many more significant coefficients than Figure 4.2. In general

more spectral coefficients are required to represent a slowly varying time signal which is

non-sinusoidal. By analogy, the Fourier transform of the unit gate or rect function is a

sinc function (31:47,83), a spectral representation which also requires a significant number

of damped oscillatory components.

As in Figure 4.2, Figure 4.A shows a dominant coefficient (4th) corresponding to

the frequency of the signal in the third interval. Additionally, the large Oth coefficient

corresponds to the DC offset in the interval.

After applying the inverse transform, the output shown in Figure 4.5 was achieved.

The output signal and input signal are essentially identical, with an rms error of 2.47 x 10'.
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The use of PC-DSP was invaluable to the development of this thesis. It provided

a proof of concept indicating the developed theory of Chapter 2 was correct and worthy

of further research without fully coding the algorithm in a high-level language. Slight

modifications and corrections to the theory were also facilitated, i.e. making inequalities

in the derivation consistent for the "limiting" one point overlap case. Finally, a more

retrospective benefit was that during coding of the algorithm, this same example was

used. Having saved the plots after each step in the forward and inverse transtorm, the

expected result was known and each step could be validated before proceeding to the next

stage. Attempting to debug a program of this magnitude without knowing intermediate

results would have been rather arduous.

4.2 Fast Fourier Transform

After developing the prototype system and validating the theory behind the GLOT,

actual code was developed which could provide faster, more general results. The most

important initial coding task was development of an FFT routine, and a full discussion of

the Ada based FFT developed for this thesis is detailed in Chapter 3.

4.3 System Software Development

With a thoroughly tested FFT routine available, the software development unique to

the GLOT could be initiated. One of the underlying goals during all software development

was to ensure the code could be easily understood and modified. The use of Ada as

a programming language aided in achieving this goal. Also, all algorithmic coding was

made as general as was practical. This thesis is the incipiency of research regarding the

GLOT, and it is essential that follow-on students understand the details of the software

and can use it as a baseline for their subsequent work. Therefore, this section will briefly

outline each package or subprocedure of the basic software program and how the package

or subprocedure relates to the complete program. Further, each portion of the code will

be referenced to the appropriate section or equation in Chapter 2. A complete listing of

all source code (with similar referencing) is provided in Appendix A.
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4.3.1 Main Program Subprocedures

4.3.1.1 GetFileData Procedure GetFileData prompts the user for the name

of the data file which contains all the information necessary to run the program. This input

file must include the following entries :

1. The file containing the data set to be processed

2. The desired filename for the derivative data

3. The desired filename for the spectral coefficieni data

4. The desired filename for Ihe output data

5. The desired filename for the error data

6. The desired filename for the information pertaining to this run

7. The number of points to be processed

8. The number of data partitions

9. The partition point and overlap Lize for each partition

Three different stages in the transformation were of interest, including the derivative of the

spectral coefficients (used mainly in initial debugging), the spectral coefficients, and the

output (or reconstructed signal). This data was stored in the user defined files specified in

entries 2-4 above. The point-by-point error between the output and input is captured in

the file specified by entry 5. General information pertaining to the current data run and

any compression or filtering employed can be written to the information file specified by

entry 6. After the number of partitions is entered, the partition point and number of points

overlap is loaded for each partition. Also in this subprocedure, the first window of input

data is copied to the end of the file. This allows so the data to be processed as a periodic

waveform in an effort to avoid boundary noise at the front and back of the reconstructed

signal. An example input file is given in Figure 4.6. This particular input fi~e specifies

that 1000 samples will be extracted from file "input.dat". The results of interest will be

written to the appropriate filename. The data will be partitioned into 4 segments, with

overlap of IC points for the first two intervals, and 20 points for the last two intervals.
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input.dat
derivative.dat
alpha.dat
output.dat
error.dat
info.dat
1000
4
200
10
400
10
600
20
800
20

Figure 4.6. Example Input File

4.3.1.2 MultiplyBy_ Window Procedure MultiplyByWindow creates a win-

dow (defined by equation 2.8) based on the size of the data to be processed and the overlap

on either side and multiplies this window by the data. It also folds in the appropriate points

to create a vector from aj to aj+l as defined in equation 2.9.

4.3.1.3 Compute Coefficients Procedure Compute Coefficients performs an

even extension of the data, and an FFT as defined in steps 5 and 6 of Section 2.1.2.4.

Note here that the points into the routine are from aj to aj+l or N + 1 points, while the

coefficients out of the routine are from a1 to aj+i - 1 or N coefficients.

4.3.1.4 ReconstructionFFT Procedure Reconstruction.FFT is the first step

in the reconstruction of the signal, involving an odd extension of the data and an FFT as

defined in steps 1 and 2 of Section 2.1.3. The output data is the imaginary output from

the FFT.

4.3.1.5 DivideBy_ Windows Procedure DivideByWindows employs the win-

(low created in MultiplyByWindow to reconstruct the signal as defined in step 3 of Sec-
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tion 2.1.3. The output data from aj+1 - Ej+l to aj+1 cannot be reconstructed during the

current window processing loop because this segment requires the processing of data from

aj to aj + Ej of the next window. Therefore, during any given window processing loop,

output data from aj - cj to aj+l - c+I is calculated and written to the output file.

4.3.1.6 Do-Work Procedure Do-Work performs the complete GLOT by call-

ing the procedures discussed above. Each data segment is processed in the main loop and

the variables characterizing the current data segment are initialized as a first step inside

this loop. Any processing of the spectral coefficients to obtain signal compression can be

implemented between procedures Compute- Coefficients and ReconstructionJ 7.

This procedure also implements the solution to the finite signal length problem out-

lined in Section 2.2. The first and last data segments are handled as special cases. The

reason for this special processing is the absence of data left of the first segment and right

of the last segment. Lack of data in these regions means non-overlapped processing on

[aj,aj +Ej] in the first segment, and on [aj+l - Ej+l,aj+l] in the last, leading to edge effects

in the reconstructed output. The problem is handled by processing the first data segment

twice. Looking back to procedure Get-Data discussed in Section 4.3.1.1, the first window

of data was written to the end of the input vector. When the input data is passed to

DoWork for processing, the first window of data will be processed once during the first

processing cycle (j = 0) and once during the last (j =Partitions'last-1). The first time

through the processing loop, there will be perfect reconstruction in (1) the region of no

overlap [aj + cj, aj+l - (j+lj , and (2) the overlapped region with the right adjacent interval

[aj+l - Ej+, aj+l]. The reconstructed values from [aj,aj + Ej] will be determined in the

final loop, where the left adjacent window of data is the last input segment. These values

are written to the beginning of the output file in the loop following a call to procedure

Divide3By_ Windows (see Appendix A). The last input data segment is properly processed

during the second-to-last processing loop, since the first data segment has been appended

to the right of the end data. By "wrapping" the data in this manner, the reconstructed out-

put for the first and last data segments is free from edge effects caused by non-overlapping

4-9



intervals. All other segments of data are inherently immune to this effect as discussed in

the theory of Chapter 2.

4.3.2 Package Type-Package Package Type-Package contains all types used in the

program, and these types are global to all packages and subprocedures. Unconstrained

arrays are used wherever possible to allow dynamic memory allocation. Types Direction,

Phase-Vector, and Phase-Type were used as part of compression techniques which will be

discussed in subsequent sections.

4.3.3 Package FFTPack Package FFTPack is fully explained and documented in

Chapter 3.

4.3.4 Package Vector-Package Package Vector-Package contains three functions

which contributed to the readability of the main program, and operated on unconstrained

array sizes. Function Even-Extend implemented the even extension defined in Section 2.1.2.4,

step 5, and is called from procedure Compute-Coefficients within the main program. Func-

tion Odd-Extend implemented the odd extension defined in Section 2.1.3, step 1, and is

called from procedure ReconstructionFFT. Finally, function Reverse-Assignment was used

to assign window values to the left window segment from the right window segment within

procedure DivideBy Windows. This function exploits the fact that overlapping window

segments must be symmetric about ap. Without this function, an additional window vector

would have had to be passed out of procedure MultiplyBy_ Windows and into procedure

DzvideBy Windows. This package can be expanded to include future vector manipulation

requirements, or could be linked for use by another algorithm requiring these functions.

4.3.5 Package ComplexPkg Package Complex-Pkg contains basic complex number

manipulations on real and complex numbers and vectors.

4.3.6 Independent Interval Processing All of the software code referenced thus far

was based on overlapped adjacent intervals, except for the two intervals at the signal

boundaries. These two intervals were treated as special cases as discussed in Section 4.3.1.6.
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Applying the concept of independent interval processing discussed in Section 2.3 required

significant modifications to this software program. All affected procedures are given in Ap-

pendix C and replace those given in Appendix A. The most important distinction evident

in the changes is found in Procedure Do-Work. Previously, reconstruction of the signal in

the jth interval on [aj+1 - cj+i, aj+i] was delayed until the processing of the next interval.

This requirement is based on the dependency between the overlapped region of adjacent

signal intervals. Using the approach of Section 2.3, however, each interval can be fully

reconstructed independent of any other intervals. The independent processing of data can

be an advantage in terms of real-time processing, error control, parallel processing, and

decreased buffer requirements, all of which will be discussed in Chapter 5.

4.4 Applications

After developing a software program which implemented the GLOT, the program

was used to investigate various potential applications. The research discussed in this

chapter concerning speech involves various attempts to efficiently encode the decomposed

spectral coefficients in a manner that allowed for a quality reconstruction. Applying the

GLOT to speech signals was a natural extension of previous work in this area (18:975-976).

Further, it was assumed that speech, being sinusoidal in nature (32), would lend itself to a

transform based on sinusoidal representation. The following sections detail initial testing

and evaluation of the algorithm, including its use in solving the finite length data problem,

perfectly reconstructing independently processed intervals, and compressing speech.

4.5 Initial Testing

The PC-DSP example outlined in Section 4.1 was used throughout development of

the code outlined in Section 4.3. After ensuring the signal defined in equation 4.1 could be

reconstructed to roundoff error, the program needed to be tested with an actual signal. A

sample speech signal from a professional speech data base (22) was used, which consisted

of the phrase "American newspaper reviewers like to call his place nihilistic", spoken by

a male speaker. This 60,080 sample speech file was sampled at 16 kHz and represented

using 16 bit integers. These numbers become important when discussing data rates and
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Figure 4.7. Sample Speech Signal

compression techniques. Figure 4.7 displays the first 10,000 samples of the data which

correspond roughly to the word "American...". The signal was divided into equal sized

windows of 512 points with a one point overlap. The one point overlap was chosen to

determine an upper bound on the amount of edge effects as a function of window overlap.

This is the least amount of overlap allowed for the GLOT.

An example of the spectral coefficients calculated in the forward transform is given in

Figure 4.8. The coefficients in this interval correspond to input samples from 4096 to 4608.

Figure 4.7 demonstrates that this interval contains significant speech data, yet our spectral

coefficients seem to be insignificant in the high frequency range. Although the exact nature

of the response of the system to eliminating coefficients is unknown until tested, this initial

plot lends confidence to the idea that a significant amount of compression may be possible

using the GLOT, without significant degradation of the signal and without extremely

burdensome computational complexity. First, however, it was necessary to determine the

ability of the algorithm to reconstruct the signal using all spectral components.

The signal was reconstructed using all of the spectral coefficients and the result is

given in Figure 4.9. If this plot looks quite similar to that in Figure 4.7, it should. They are
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Figure 4.8. Sample Spectral Coefficients in One Window on Interval [4096,4608]

exactly the same. The ESPS program used to generate recordings required integer inputs;

the output signal, therefore, was rounded to the nearest integer before being sent to a file.

The input signal also consisted of integers. After reconstructing this speech signal using

all the coefficients and a one point overlap, each of the 60,080 samples of the output and

input were exactly equivalent.

The perfect reconstruction of the first and last data segments, using the method

outlined in Section 2.2, was also confirmed. Using the GLOT in this manner provides

for a solution to finite length signal processing previously unavailable. This problem is of

significance in applications such as image processing, and of lesser importance in speech

processing where data flow is continuous. This result demonstrates the potential appli-

cation of the GLOT to a wide range of signal processing problems beyond the speech

application discussed later in this section. The three goals of a nonexpansive transform,

perfect reconstruction, and no additional complexity were all met using this approach.

As a separate effort, the independent interval processing program detailed in Ap-

pendix C was tested. This program provided perfect reconstruction of the input signal

using 512 sample intervals and a 10% overlap. As this concept was developed late in the
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Figure 4.9. Reconstructed Speech Signal

thesis effort, no further experiments were performed using this program. Chapter 5 dis-

cusses the potential for follow-on research in the area of independent interval processing

using the GLOT.

Obtaining perfect reconstruction with a one point overlap was a very significant

result. The previous work in this area, in particular by Malvar (21), (18) and Princen

and Bradley (27), were based on a 50% overlap which requires more processing since each

point is processed as part of two intervals. Further, Malvar's fast algorithm approximates

the LOT (21:556-557), while the GLOT requires no approximations. Since the GLOT is

of the same complexity as the FFT, it is comparable to Malvar's algorithm (21:553). This

result also formed a baseline from which compression techniques could be investigated in

an attempt to acquire the basic elements of a low bit rate speech encoder. As discussed in

Section 1.2, perfect reconstruction, when using all coefficients, is an essential requirement to

further pursuing the merits of a specific decomposition/reconstruction algorithm. Because

of the excellent results with a one point overlap, subsequent efforts focussing on compression

techniques were primarily based on this minimal overlap.
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4.6 Exploring Various Compression Techniques

Building on the success of the prpvious section, various compression techniques could

be investigated in an effort to reduce the number of bits required to reprc¢e•nt a speech

signal with a high degree of accuracy. One problem associated with determining the most

promising approaches to compressing speech is that success is defined by the ear. Firm

quantitative measures for speech coding success have yet to be developed, and subjective

measures are often employed to quantify a degree of success. Ongoing research attempts

to link objective measures with the subjective success or failure of various compression

techniques (see, for example, Quackenbush et al. (28)). No firm guidelines could be used

to determine which approaches would be most promising, because the approach best suited

to any algorithm when dealing with speech signals is idiosyncratic to the method employed

(15). The following sections outline the compression techniques investigated pursuant to

this thesis. Each of these techniques required some processing in addition to that accounted

for in Appendix A. Additional code used in conjunction with the following techniques will

be provided as part of the appropriate section.

4.6.1 Absolute Spectral Thresholding Absolute Thresholding was one of the most

basic and effective techniques employed in reducing the number of spectral coefficients,

while maintaining a high degree of speech quality. The code given in Figure 4.10 was

added to Procedure Do Work following the procedure call to Compute Coefficients and

replaces the print loop at that location.

As noted in Section 1.4, the three goals of a high quality, high compression, low

complexity coder must all be weighed. This technique has a relatively low complexity,

since only a simple threshold comparison is required beyond the basic transform. While

setting a threshold is a simple technique, the choice of a proper threshold is arbitrary.

In general, the proper threshold will depend on the data being processed and effect the

compression capability of the system. With this in mind, testing was accomplished to

determine the quality versus compression trade-off. Four different compression ratios were

used to process the test phrase, corresponding to 85.0%,92.5%,96.2%, and 98.1%. This

means that the stated percentage of least significant coefficients were not used, or "zeroed
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for x in StartData..(End_-Data-1) loop
if abs(Transformed_)ata(x)) < AlphaThreshold then

TransforniedData(x) := 0.0;
if j < (Partitions'last - 1) then

AlphaCompressionCounter := AlphaCompressionCounter + 1;
end if;

end if;

Float.Jo.put(Alphafile,TransformedData(x));
TextIo.new/ine(Alphafile);

end loop;

Figure 4.10. Additional Code for the Absolute Threshold Compression Technique

out," prior to reconstruction of the signal. The following assumptions allowed for a bit rate

calculation corresponding to the percentages chosen above :

1. Downsampling the input from 16 kltz to 8 kflz would not significantly affect the

results.

2. The spectral coefficients could be represented with 4 bits.

3. Additional overhead bits need not be accounted for.

Bit rates were then computed by :

bits 8 data sample coefficient 4 bitsRb(-bt),se=8000( atscmpe)*• 1( de) *4( ofiin.) * (1 - C). (4.2)

sec Sec data sample coefficient,

where Rb is the bit rate of the system, and C is the compression ratio of eliminated

coefficients. This formula yields bit rates of 4800,2400, 1200, and 600 bits/sec when using

the compression ratios mentioned above. These bit rates are commonly used in speech

processing systems. The same data rates were tested here to provide a bit rate comparison

with existing techniques.

The thresholded coefficients of one interval for compression percentages of 85.0% and

98.1% are shown in Figure 4.11 and Figure 4.12, respectively. Notice the significant re-

duction in the number of non-zeroed coefficients, especially in Figure 4.12, when compared

to the unthresholded coefficients in Figure 4.8. The first 10,000 points of the output wave-
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Figure 4.11. Absolute Threshold Spectral Coefficients (85.0%) on Interval [4096,4608]
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Figure 4.12. Absolute Threshold Spectral Coefficients (98.1%) on Interval [4096, 4608]
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Figure 4.13. Absolute Threshold Output Waveform with 85.0% Compression

form for these same compression percentages are given in Figures 4.13 and 4.14. When

compared to Figure 4.9, Figure 4.13 provides a better match to the perfectly reconstructed

waveform than Figure 4.14, especially when the speech is of low amplitude. Of course,

the final test of the success or failure of these outputs in matching the input waveform

depends on the ear. After listening to the absolute thresholded outputs, some interesting

observations were made. The reconstructed signal at an 85.0% threshold level was of

high quality. In each recording, noise was evident in the form of "pinging" or extraneous

tones. The speaker's voice, however, especially at 85.0% thresholding, was not distorted.

In other words, the speaker, as well as the speech, could be discerned in the recording. In

addition to the background tones, the other form of noise was the elimination of parts of

speech near word boundaries. This can be seen in Figure 4.14 as the degraded reconstruc-

tion just after sample 2000 and again between sample 6000 and 8000. Even at the 85.0%

level, the final syllable of the final word "nihilistic" was not discernible, but the problem

was most significant at higher compression levels. The 98.1% thresholded output was not

recognizable, due to both forms of noise discussed above.
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Figure 4.14. Absolute Threshold Output Waveform with 98.1% Compression

A modification to this approach was also implemented after viewing the results of the

absolute threshold technique. At high compression ratios, a single (or small number of)

remaining coefficient(s) might result in a reconstruction containing sinusoidal noise in the

entire interval. Figure 4.15 is an example of two such intervals. In the two adjacent intervals

shown, only one coefficient was of large enough magnitude to survive the thresholding.

The resulting reconstruction is a low frequency sinusoid from the low frequency coefficient

in the left interval, and a high frequency sinusoid from the high frequency coefficient in

the right interval. Figure 4.16 yields this reconstruction, which is a form of noise in

the output wavefoi, i. (Note also the 180 deg phase shift in the low frequency sinusoid

resulting from a negative coefficient, as expected). To lessen this problem, and allow

a more judicious choice of important coefficients, the following rule was applied : any

coefficient above the threshold, but with neither adjacent coefficient above the threshold,

will be zeroed as if it had not met the threshold criterion. Besides the visible sinusoidal

noise, an underlying assumption in making this rule was that coefficients containing a

significant amount of signal information are generally grouped together. This assumption

was based on viewing numerous spectral plots. Based on this assumption, the converse of
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Figure 4.16. Reconstructed Data in Two Adjacent Windows, [38400 - 39424]
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tile aforementioned rule was also applied : any coefficient below the threshold, but with

both adjacent coefficients above the threshold, will be retained for reconstruction. The

code for this modified absolute threshold method is given in Figure 4.17. Recordings of the

output waveforms using this modified absolute threshold approach were indistinguishable

from the recordings when using the original approach. Tile comparison was performed for

each of the four compression percentages. Some differences in the waveformi were apparent,

but they were not significant enough to be distinguished by the ear.

4.6.2 Relative Spectral Thresholding The next approach was similar to the absolute

threshold method, but each coefficient was scaled prior to comparison with the threshold.

The scale factor was simply the sum of all coefficients in the window, or the integral

of coefficients in the window. Adding this parameter into the calculations was an at-

tempt at providing a better reconstruction for intervals containing edges of words or near

speech/non-speech boundaries. This portion of the reconstructed signal was degraded

substantially using the absolute threshold method, especially at higher compi'xssion per-

centages (or lower bit rates), as discussed in Section 4.6.1. The code for this new approach

is given in Figure 4.18. Figures 4.19 and 4.20 are the reconstructed waveform after ap-

plying the relative threshold technique. The 85.0% reconstruction has some spikes in the

output at various sample locations. At the 93.1% levdi, the output is severely distorted in

many intervals. When comparing a recording of these outputs to the absolute threshold

technique for similar compression percentages, the absolute threshold method produced a

better quality reproduction. There was more background noise or "tones" in the sound

of the relative thresholded reproduction, and the sound of the voice also changed slightly

(affecting the recognition). The 93.1% compressed reconstruction was mostly pure noise

to the ear, as would be expected from viewing Figure 4.20. At 85.0% compression, the

relative threshold signal, while worse than its absolute threshold equivalent in general,

had one redeeming quality. Tile signal at word boundaries was often reproduced using

the relative threshold technique whereas it was eliminated in the absolute threshold out-

put. The relative threshold method reproduced the -... tic" of "nihilistic", discussed in

Section 4.6.1. This advan' ',ge is the result of forcing coefficients from each window to be

retained, thereby allowing a reproduction even where there is minimal signal energy. The
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- -Take care of first coefficient separately
- -so the first time through the following
- -loop there is a (x - 1) point to look at
if abs(TransformedData(StartData)) < Alpha-Threshold then

TransformedData(StartData) := 0.0;
ifj < (Partitions'last -1) then

AlphaCompressionCounter := AlphaCompression-Counter + 1;
end if;

end if;
Floatio.put(Alphafile,TransformedData(StartData));

TextIo.NewLine(Alphafile);

for x in (StartData+l)..(EndData-1) loop

if abs(TransformedData(x)) < Alpha-Threshold then
if TransformedData(x-1) = 0.0 then

TransformedData(x) 0.0;

if j< (Partitions'last -1) then
AlphaCompression_-Counter := AlphaCompressionCounter + 1;

end if;
elsif abs(TransformedData(x+l)) < Alpha-Threshold then

TransformedData(x) := 0.0;
if j < (Partitions'last -1) then

AlphaCompression-Counter := AlphaCompressionCounter + 1;

end if;
end if;

eisif Transformed _Data(x-1) = 0.0 then
if abs(TransformedData(x+l)) < Alpha-Threshold then

Transformed-Data(x) := 0.0;
ifj < (Partitions'last -1) then

AlphaCompressionCounter :-. AlphaCompression-Counter + 1;
end if;

end if;
end if;
FloatIo.put (AIphafile,Transformed.Data(x));
Text Io.NewLine(Alphafile);

end loop;

Figure 4.17. Additional Code for the Modified Absolute Threshold Compression

Technique
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Alpha-Sum := 0.0;
- - Alpha-Sum is recomputed for each interval

for x in StartLData..(End-Data-1) loop

Alpha-Sum := TransformedData(x) + Alpha.Sum;
end loop;

for x in StartData..(EndData-1) loop

if (TransformedData(x)/AlphaSum) < RelThreshold then
Transformed-Data(x) := 0.0;
if j< (Partitions'last -1) then

AlphaCompressionCounter := AlphaCompressionCounter + 1;
end if;

end if;

Floatio.Put (Alphafile,TransformedData(x));
Textdo.New-Line(Alphafile);

end loop;

Figure 4.18. Additional Code for the Relative Thresholding Compression Technique
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Figure 4.19. Relative Threshold Output Waveform with 85.0% Compression
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Figure 4.20. Relative Threshold Output Waveform with 98.1% Compression

tradeoff was that coefficients were removed from the windows containing a strong signal,

creating excess noise in numerous intervals. This noise overshadowed any benefit resulting

from use of the relative threshold technique.

4.6.3 Polynomial Fitting of the Spectrum All of the speech compression techniques

discussed thus far had unique merits and shortcomings, but none was far superior in per-

formance to the others. The simplest technique, the basic absolute threshold, provided the

best reconstruction, yet none of the others were significantly more complex. The amount

of required coefficient processing was an important parameter to minimize. For this rea-

son, the initial methods tested were the least complex. It became apparent, however, that

further reductions in the number of coefficients required for high quality speech recon-

struction would require more complicated spectral processing. Viewing the unthresholded

coefficients, it appeared is if they might be modelled by a polynomial curve. The follow-

ing rules were established as a criteria for what information would be extracted from the

coefficients and used in the reconstruction :

1. A noise threshold will be established below which no coefficients will be kept.
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Figure 4.21. Sample Spectral Coefficients Tagged for Polynomial Fit Processing

2. From the remaining coefficients, the local maxima and minima for both the positive

and negative coefficients will be retained.

3. Of those coefficients above the noise threshold, but not maintained as a maxima or

minima, the phase will be maintained.

Figure 4.21 is a portion of the coefficients given by Figure 4.8. The first three maxima

or minima which would be saved in this interval based on the above rules are labeled

appropriately. The noise threshold was assumed to be below any of the coefficients in

this figure. The following rules governed reconstruction of the signal given this saved

information :

1. A deterministic polynomial curve will be fitted using the strictly positive or strictly

negative local maxima, local minima, and local maxima (see Figure 4.21) as the left,

middle, and right points on the curve respectively. This process will result in both

a positive and negative polynomial curve being defined at any given point in the

spectrum.
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2. Any coefficient which was not a maxima or minima, but was above the noise thresh-

old, should be estimated by the value of the appropriately phased polynomial curve

defined at that location.

3. Any coefficient which was below the noise threshold will be assumed to be zero.

This method required the addition of three new procedures outlined in Appendix B.

Procedure Maxima-Minima extracted the positive and negative maxima and minima, the

required phase information, and some initial conditions for use in the reconstruction. Pro-

cedure PolynomialFit defined the parameters to be used in procedure Fit-Slice, which

computed the actual polynomial and reconstructs the coefficients. At this point, the basic

reconstruction is performed on the estimated coefficients.

This method is different from any of the other methods in that the amount of pos-

sible compression is set by the data rather than varied based on a compression threshold.

Although some range of compression can be achieved by modifying the noise threshold,

the compression percentage is essentially the ratio of relative maxima and minima spectral

coefficients to data samples. An advantage of this technique is that the choice of threshold

is not arbitrary, but related only to the amount of noise in the signal. Viewing the data

in non-speech intervals, it was determined that the noise reached an amplitude level of ap-

proximately 35. Setting the threshold to this level resulted in a compression ratio of 20%.

A threshold of 60 yielded a compression ratio of 85.0%, analogous to data accumulated for

previous methods. Varying the threshold from 35 to 60 did not perceptibly alter either the

viewed or recorded reconstructed output. The coefficients remaining after extracting the

maxima and minima for one interval are given in Figure 4.22. The coefficients in this inter-

val are much more sparse than the original unthresholded coefficients given in Figure 4.8.

The reconstructed output with 85.0% compression using the polynomial fit technique is

given in Figure 4.23.

Figures 4.24 through 4.26 are provided to demonstrate the most important aspect of

the polynomial fit technique, and the step which creates noise in the reconstructed output.

Figure 4.24 is a plot of unthresholded spectral coefficients 64 - 128 from the interval

analyzed in Figure 4.8. Figure 4.25 are the remaining (positive and negative) maxima and
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Figure 4.22. Polynomial Fit Spectral Coefficients (85.0%) on Interval [4096,4608]
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Figure 4.23. Polynomial Fit Output Waveform with 85.0% Compression
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Figure 4.24. Unthresholded Coefficients 64 - 128 of Figure 4.8

minima which will be used to reconstruct the signal, along with a sign vector. Figure 4.26

gives the reconstructed or estimated spectral coefficients based on the polynomial fit criteria

discussed above. Comparing Figures 4.24 and 4.26, it is apparent that in some regions,

the polynomial fit accurately estimates the actual coefficients. In other regions, however,

the coefficients cannot be modelled accurately with a polynomial curve. Reconstructing

the signal using coefficients which have not been accurately modelled creates noise in

the output waveform. The full extent of this noise can only be ascertained, however, by

listening to the recorded output.

The polynomial fit output was of the same audio quality as the absolute threshold

output of similar compression ratio. It also had the advantage, as in the case of the relative

threshold technique, of retaining some speech sounds at word boundaries which were elim-

inated in the absolute threshold output. In this sense, the polynomial fit technique was

marginally superior in audio reproduction, at the expense of some additional computations.
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Figure 4.25. Polynomial Fit Spectral Coefficients 64 - 128 of Figure 4.22
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Figure 4.26. Reconstructed Polynomial Fit Spectral Coefficients 64 - 128 of Figure 4.25
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4.6.4 Cepstral Processing Homomorphic filtering, or homomorphic deconvolution,

is a process designed to separate convolved components of a signal (25:807). Cepstral pro-

cessing is a specific homomorphic filtering technique with numerous applications, including

speech (6:1428). The term "cepstrum" comes from the interchange of each letter in the

first syllable of "spectrum". Using this same naming convention, terms such as quefrency

and liftering correspond to frequency and filtering in the cepstral domain. The power cep-

strum is generally defined as the power spectrum of the logarithm of the power spectrum

of the function, and is used in detection or estimation of signal parameters (6:1429). An-

other technique, the complex cepstrum, retains the phase information of the data, and can

therefore be used in reconstruction applications (6:1430). The equation for the complex

cepstrum (25:782) is given in Equation 4.3 below:

Cm = f log I S(ejW) I ei'dw. (4.3)

The disadvantage of this technique is the complexity involved in calculating the complex

logarithm. The transform used in this type of system is a Fourier transform. The technique

discussed in this section involves application of cepstral-like techniques using the GLOT.

The coefficients of the GLOT are real valued, yet in magnitude and phase represen-

tation, they contain a phase term of either zero or 180 deg which must be maintained to

reconstruct the signal. Recognizing that the phase term needed to be maintained, but that

it could only be one of two specific values, the following definition was derived to govern a

cepstral-like transformation as it relates to the GLOT

£Ck(x) = gF[ln I (QF(s(xj,k))I]. (4.4)

where s(Xj,k) is the data, 9F is the forward GLOT, and £j,k(x) are the resulting cepstral-like

coefficients. This new transform actually encompasses parts of both the power cepstrum

and complex cepstrum described earlier. As in the power cepstrum, a complex logarithm is

not required. The magnitude operation in equation 4.4 facilitates this simplified operation.

Because the phase information can only be one of two values, it can easily be extracted as

part of the algorithm and used in the reconstruction. The phase information is preserved

4-30



for reconstruction, as in the complex cepstrum given in Equation 4.3, without using the

complex logarithm. By tailoring cepstral-type operations specifically to the GLOT, the

best of both techniques can be exploited. Given cepstral-like coefficients defined by £j~k(x),

the signal can be reconstructed by :

Sj~k = 9I,[Pj,k9A(Lj.,(X))]. (4.5)

where g1 is the inverse GLOT, Pik is a phase vector correcting for the magnitude scaling

in equation 4.4, and Sj,k is the reconstructed signal such that Sik • S(Xjk).

Using this new decomposition and reconstruction of the signal, various compression

techniques of the cepstral coefficients (mocpression techniques ?) can be tested. If this

new transform can "pack" more signal information into fewer coefficients, then greater

compression can result by retaining only the information packed cepstral coefficients.

This transformation is different from the original GLOT. Therefore, the first test was

to use all cepstral coefficients in reconstruction of the signal. The cepstral coefficients in

one window are given in Figure 4.27. The output signal was an exact copy of the input

signal under these conditions. In this test, the perfect reconstruction criteria was satisfied,

and correct implementation of the theory outlined above was also validated. The next two

sections detail two methods employed in an effort to determine a high quality, low bit rate

technique for speech processing.

4.6.-4.1 Cepstral Liftering The cepstral coefficients near the origin (low que-

frency) define the spectral envelope (26:203-204). Based on this observation, one technique

which can be employed is to retain the first x coefficients to be used in the reconstruction

of the signal, where x is can vary from one to the total number of cepstral coefficients.

The compression ratio is then given by x/N, where N is the number of samples (and

cepstral coefficients) in each interval. This technique involves liftering (filtering) the low

quefrency cepstral coefficients. Figure 4.27 displays low quefrency coefficients having higher

amplitude than the rest of the cepstral coefficients, and liftering will pass these important

coefficients. The same four compression percentages used earlier were tested here. The out-
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Figure 4.27. Non-liftered Non-thresholded Cepstral Coefficients in One Window on In-
terval [4096,4608]

puts for 85.0% and 98.1% compression of the cepstral coefficients are given in Figures 4.28

and 4.29, respectively.

In all previous plots, higher quality recorded outputs had waveforms that matched the

input waveform to a high degree. Conversely, output waveforms which did not match the

input waveform were of poor audio quality. This trend does not indicate, however, that a

correlation always exists between reconstructed speech quality and waveshape. Comparing

Figures 4.28 and 4.29 indicates strong similarity between the outputs. When listening to

these two outputs, however, the output in Figure 4.28 was of significantly higher audio

quality.

The cepstral lifter technique distorted the speakers voice slightly at the 85.0% com-

pression level. There were no extraneous tones in the output as in the case of the absolute

threshold output. The cepstral liftering seemed to garble the speaker's voice, and it was

not as clear as the absolute threshold output at this compression level. At higher com-

pression ratios, the cepstral lifter technique provided much higher quality outputs when

compared to the absolute threshold method. The transition from 85.0% to 92.5% did not
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Figure 4.28. Output Waveform After Cepstral Liftering and Performing 85.0%

Compression
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Figure 4.29. Output Waveform After Cepstral Liftering and Performing 98.1%

Compression
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Figure 4.30. Output Waveform After Cepstral Liftering and Performing 99.1%
Compression

audibly detract from the quality of the reconstructed output, and further compression to

96.2% and 98.1% were the highest quality reproductions at these levels compared to any

of the previous techniques. This success prompted another transformation for a bit rate

of 300 bit/sec as computed in Section 4.6.1. 300 bits/sec corresponds to using less than

one percent of the coeffi( ients in reconstruction of the signal! Figure 4.30 is a plot of the

output resulting from this reconstruction. The speech was recognizable at this level, but

contained significant noise. The waveform is very similar to the waveforms in Figures 4.28

and 4.29, although the audio quality of all three is different.

This technique was different from all other techniques in that the number of coef-

ficients retained in each window remained constant. Less overhead would be required to

pass the necessary reconstruction information through a communications channel, since the

location and number of coefficients in each window is preordained. In all other schemes,

the number of coefficients and their unique position in frequency would need to be passed

in addition to the value of the coefficients. The disadvantage of this technique is that the

same number of coefficients are used to represent windows containing no speech as those
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Figure 4.31. Thresholdcd Cepstral Coefficients (85.0%) in One Window on Interval
[4096,4608]

containing speech in the entire interval. If 12 coefficients are liftered from each window,

and there are 10 windows where no speech is present, then 120 cepstral coefficients are

retained which have no information. To overcome this indiscriminate coefficient retention,

the technique of the next section was irvestigated.

4.6.4.2 Cepstral Thresholding Rather than liftering the low quefrency cep-

stral coefficients from each window, a threshold was used to retain a percentage of the

highest amplitude coefficients. Because the low quefrency coefficients are genera'!y of

higher amplitude (see Figure 4.27), this technique has the effect of low pass liftering. The

difference here is that more low quefrency cepstral coefficients will be retained in speech

intervals and less will be retained in non speech intervals. This technique is completely

analogous to the spectral thresholding technique of Section 4.6.1. The coefficients re-

tained iat one example window for compression percentages 85.0% and 98.1% are given

in Figures 4.31 and 4.32, respectively. Notice that some higher quefrency coefficients

are retained in Figure 4.31, due to the higher cepstral threshold. When the threshold is

increased to achieve 98.1% compression, however, the result is a basically a low pass lifter
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Figure 4.32. Thresholded Cepstral Coefficients (98.1%) in One Window on Interval
[4096,4608]

of the first 12 cepstral coefficients. Figure 4.33 gives only the low quefrency coefficients of

Figure 4.33. The only difference between a 12 coefficient low pass lifter and the technique

resulting in Figure 4.33 is that one of the 12 low quefrency coefficients did not meet the

threshold, and was zeroed out along with the higher quefrency coefficients. The output

resulting from the 85.0% compression level, given in Figures 4.34, was closer in form to the

input than any of the liftering outputs. At higher compression ratios, however, the output

waveforms were very similar to the liftering output waveforms given above.

This technique detracted from the speaker's voice quality less than the liftering tech-

nique. At the 85.0% compression level, however, the absolute threshold technique still

had the best quality reproduction. At higher compression ratios (above 98%), cepstral

thresholding outperformed all other techniques tested.

Because of the success of this technique at high compression ratios, the 99.1% com-

pression level was tested as in Section 4.6.4.1 above. Figures 4.35 and 4.36 give the thresh-

olded cepstral coefficients of one window and resulting output waveform for this compres-

sion level. Only the first 64 cepstral coefficients are shown in Figure 4.35, since all others
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Figure 4.33. First 64 Thresholded Cepstral Coefficients (98.1%) in One Window on In-
terval [4096,4608]
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Figure 4.34. Cepstral Thresholding Output Waveform with 99.1% Compression
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Figure 4.35. First 64 Thresholded Cepstral Coefficients (99.1%) in One Window on In-
terval [4096,4608]
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Figure 4.36. Cepstral Thresholding Output Waveform with 99.1% Compression
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are zero. The audio quality at this high compression level was better than the quality of

the analogous liftering output. The speech was understandable, although noise was present

which altered the speaker's voice.

4.6.5 Summary All of the techniques given in Section 4.6 were analyzed to gain a

better understanding of the GLOT, and define potential areas which merit further research

toward development of a low bit rate speech encoder. Due to the amount of previous

research in the area of speech compression, and the complexities of speech processing, the

body of experiments performed in this thesis is not sufficient to define such an encoder.

The following chapter will focus on potential follow-on topics toward this goal, as well as

summarize the results of this thesis.
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V. Conclusion

5.1 Summary and Conclusions

This thesis was the incipiency of research regarding the generalized lapped transform

and its application to the processing of speech signals. As such, the initial research empha-

sis was proper validation and implementation of the theory. Many areas hold promise for

future research, and some of these topics are outlined in the next section. First, however,

a summary of the results of this thesis will be provided which have laid the foundation for

subsequent efforts.

The first stage in validating the theory behind the generalized lapped transform

was the development of a prototype system using the digital signal processing tool, PC-

DSP. Use of a prototype system, especially when implementing an untested algorithm, can

significantly reduce the overall time to develop a working system. The use of PC-DSP was

especially helpful in making minor corrections to theory, and quickly validating certain

theoretical predictions. Specifically, the use of PC-DSP experimentally demonstrated that

perfect reconstruction of a signal was possible when using all spectral coefficients in the

reconstruction algorithm. Further, testing of the eventulal software program was facilitated,

because expected results from each stage of the algorithm were known a priori.

The most significant coding task and result was the development and testing of a

fast Fourier transform (FFT) algorithm. Although developed specifically to support the

generalized lapped transform , this Ada based algorithm is of use in any digital signal

processing application. Most FFT routines are limited to radix 2 application; however,

this general purpose algorithm can process data of arbitrary length. The timing analysis

in Chapter 3 also reveals that this Ada based routine, and the Ada language in general, is

viable for digital signal processing applications.

The software program outlined in Appendix A provides a decomposition/reconstruc-

tion algorithm based on a sinusoidal basis function and windows with variable length and

percent overlap with adjacent windows. Initial testing confirmed that perfect reconstruc-

tion of a signal was achievable when using all spectral coefficients in the reconstruction,

thereby satisfying the first research goal outlined in Chapter 1. This result assumes the
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signal is defined outside the interval of interest. Due to the success of the finite length

signal processing technique outlined in Sections 2.2 and 4.3.1.6, perfect reconstruction was

obtained for the first and last data segments as well, even though the signal was undefined

on one adjacent interval. This technique is the first nonexpansive lapped transform based

solution which achieves perfect reconstruction of a finite length signal, and has potential

Air Force applications in areas such as image coding, where the signal of interest is at the

border of the image. The second research goal involving finite length signals was satisfied

based on this solution.

Previous research in the area of lapped transforms has demonstrated perfect re-

construction for data defined outside the interval of interest using a 50/k% overlap, and

mathematically derived conditions for a more general size overlap (19) (8). This thesis

implemented, for the first time, a lapped transform algorithm based on the work of Suter

and Oxley (33) which achieved perfect reconstruction of a speech signal with a one point

overlap between adjacent windows. This result is significant because a transform based on

a one point overlap requires half the processing of a transform based on a 50% overlap.

The independent interval processing program (See Appendix C) provides a method

of achieving perfect reconstruction of a signal without overlapping adjacent intervals. This

result is an extension of the finite length signal solution, and previous lapped transform

algorithms have not addressed this method of processing a signal. This result developed

late in the thesis cycle. Consequently, only minimal testing and experimentation for this

specific implementation of the generalized lapped transform was performed. Despite lim-

ited experimentation, this processing method has merits which warrant further research

(See Section 5.2.1).

The software program of Appendix A was thoroughly tested to ensure operation

in accordance with the theory outlined in Chapter 2. After validating the theory, a set

of experiments were performed to gain insight into the applicability of the transform to

speech processing, and specifically speech compression. These experiments were based on

various spectral coefficient processing techniques. including absolute thresholding, relative

thresholding, polynomial fitting, and cepstral processing. The absolute thresholding tech-

nique involved setting a threshold to determine which spectral coefficients would he used
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in reconstruction of the signal. Any coefficient of amplitude greater than the threshold

was retained, while any coefficient not meeting the threshold was set to zero. This tech-

nique provided the best results in terms of audio quality at compression ratios up to 85%,

although some perceptible noise was apparent in the reconstructed output. The relative

threshold technique used the same retention criteria, although the threshold was unique to

each window. This technique had the advantage of better reproduction of the beginning or

ending of words, but overall, was inferior to the absolute threshold technique in terms of

noise. The polynomial fitting technique involved representation of the spectral coefficients

with a polynomial curve defined by the relative maxima and minima coefficients. This

technique provided outputs equal in audio quality to the absolute threshold technique for

85% compression. In addition, the polynomial fitting technique provided better speech

reproduction at word boundaries (analogous to the relative threshold technique). This

technique was inherently limited to a compression ratio of 85%. The most promising tech-

nique investigated was the cepstral processing technique, which produced an intelligible

output when using less than one percent of the cepstral coefficients in reconstruction of

the signal. Two variations on cepstral processing were investigated. The first method em-

ployed a low pass lifter (filter) to the cepstral coefficients, retaining the first x coefficients.

Varying x defined a compression percentage. The second method was analogous to the

absolute threshold method, only in the cepstral domain. A percentage of cepstral coeffi-

cients were retained based on a threshold level. The second cepstral technique produced

a better quality audio output compared to the first method. The trade-off is that the

first method requires overhead to send the position of retained cepstral coefficients in each

window. The second method involves reconstruction based on a set number and position

of low quefrency cepstral coefficients, and only the coefficient amplitude need be encoded.

All of the methods described were investigated to determine the applicability of the GLOT

to speech processing as outlined in Goal three of Chapter 1. Further research is needed

(see Section 5.2.3) to determine if these techniques can be exploited to define a complete

low bit rate speech encoder.
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5.2 Follow-On Research Areas

5.2.1 Independent Interval Processing The solution to the finite length signal prob-

lem, extended to provide independent processing of adjacent intervals, has many advan-

tages which render it attractive for further study. Previous lapped transform and filter

bank approaches require an overlap with adjacent data. One advantage of this new ap-

proach is that processing interval j is not dependent on processing interval j + 1. If

real-time processing is required for a given communication system, this advantage could

become important. Also, error control is facilitated with this new approach, since errors at

the boundary are not propogated into the adjacent interval. Further, total decoupling of

adjacent intervals allows for parallel processing of data. This could also become important

in real-time system applications. Finally, processing M data points with a periodically ex-

tended signal requires only M storage locations throughout the transformation. Processing

Al data points with an overlapped signal requires M + I locations, where I is the sum of

both overlaps. Both methods result in M coefficients in the transformation; however, the

previous overlapping method requires a larger buffer. Further investigation of this tech-

nique is required to determine which signal processing and communications applications

may benefit from its use.

5.2.2 Performance of the GLOT in the Presence of Noise The effects of noise were

not considered in this thesis. In airy practical communication system, however, noise can

have a significant impact on performance. Follow-on efforts involving any application must

include an analysis of the effects of noise. The theory predicts that any noise could be

perfectly reconstructed, along with the output signal, when using all spectral coefficients.

Perfect reconstruction of the noise may not be desirable, however, and methods of filtering

and coding the spectral coefficients which eliminate noise must be investigated. If the noise

is somehow convolved with the signal of interest, it may he liftered (filtered) in the cepstral

domain, since cepstral analysis is based on separation of convolved signals (6). In general,

the performance of the generalized lapped transform in noise will depend on the specific

type of noise present and the specific application.
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5.2.3 Cepstral Processing The experiments discussed in Section 4.6.4 indicate the

potential for a low bit rate speech coder based on the generalized lapped transform and

cepstral-like processing. Advances in fast Fourier transform algorithms, such as the one

described in Chapter 3, has made sophisticated cepstral techniques practical for real-time

applications such as speech (6:1441). Additional research is required to determine the best

technique for compressing the ceptral coefficients, including the number of bits required

per coefficient and the amount of overhead resulting from position or phase information

required for reconstruction.

5.2.4 Variable Orthonormal Bases The theory provided by Suter and Oxley (33)

allows for different orthonormal representations in adjacent windows, even though these

windows overlap. This concept has not been presented in previous research. The pro-

gram implemented as part of this research did not directly address multiple orthonormal

representations, as the sinusoidal basis defined in equation 2.3 was exclusively used. Ex-

panding the implementation program to encompass variable orthonormal bases, such as

an orthonormal polynomial, must be investigated. A signal which is not sinusoidal in

some interval may require many coefficients for representation. Potentially, the number

of coefficients can be decreased if another basis set more closely matched to the signal is

chosen in that interval. For example, a speech signal is generally sinusoidal in nature dur-

ing speech intervals, but slowly varying in non-speech intervals. Combining the features

of variable size windows and variable orthonormal bases could result in an effective speech

compression algorithm. A sinusoidal basis would be used to represent the speech signal in

voiced regions, while another basis set could be used to represent the signal in unvoiced

regions. Although the current implementation does not recognize these different parameter

intervals, Switzer (34) has developed a program to determine the voiced/unvoiced speech

boundaries. Combining the generalized lapped transform (generalized to include additional

orthonormal bases) and the work of Switzer is an area which merits further research.
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Appendix A. Ada Source Code

This appendix provides all source code used during the development and testing of

the generalized lapped transform.

A.1 Main Program

with TextIo;
with ComplexPkg;
use ComplexPkg;
with MathLib;
use MathLib;
with Vector-Package;
use Vector-Package:
with Type-Package;
use Type-Package;
with Print-Package;
use Print-Package;
with FFTPack;
use FFTPack;

procedure GLOT is

package Integerdo is new TextJo.IntegerJo(integer);
package FloatJo is new TextJo.Floatdo(float);

MaxDataLength constant 100-000;
Max-Partitions constant 500;

BigDaddyDataVector Real-Vector (1..MaxDataLength);
BigDaddyPartitionVector Partition-Vector (0..MaxPartitions);

Actual DataLength integer 0;
Actual-Partitions integer 0;

DerivName,
Alpha-Name,
OutfileName,
Difference-Name string (1.30);

DerivNameLength,
AlphaNameLength,
OutfileNameLength.
DifferenceNameLength integer range 1.30;

Info-File Text Jo. File-Type;
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- GetFileData prompts the user for the prepared info file name
- - and then reads in the data in the following order
- - (1) Input Data Filename
- - (2) Derivative Output Filename
- - (3) Alpha Output Filename
- - (4) Output Data Filename
- - (5) Input Output Difference Filename
- - (6) General Info Filename
- - (7) Number of Points in the Data Vector
- - (8) Number of required partitions
- - (9) - (?) loop for input given in (8) and get
- - Boundary point then Overlap for each partition

procedure GetFile-Data ( DerivativeFilename in out string;
Derivative-Length in out integer;
AlphaFilename in out string;
Alpha-Length in out integer;
OutputFilename in out string;
OutnameLength in out integer;
DiffFilename in out string;
DiffLength in out integer;
Infofile in out Text-Io.FileType;
Partitions in out Partition-Vector;
NumberOfPartitions in out integer;
Data in out Real-Vector;
Points in out integer ) is

- - Filenames, lengths must be in out so they can
- - be written to info file.
- - Number-OfPartitions and Points must be in out
- - Parameters because they are used in a loop to
- - Read in the appropriate amount of data

Infile,
Datafile : TextIo.FileType;
TempInput integer;
DataFilename . string(1..30);
DataFilenameLength integer;
InFilename . string(1..30);
InFilenameLength integer;
InfoFilename . string(l..30);
Info-Length integer;

Counter integer := 0;

begin

TextIo. NewLine;
Textlo.put("What is the name of the file containing ");
TextIo.put("the prepared information ? = ");
TextIo.GetLine ( InFilename, InFilenameLength);
Text-Io.Open(Infile, TextIo.In-File, InFilename(1..InFilenameLength));
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-- Now I call in the required user data
TextJo.GetLbine (Infile, Data-Filename, Data-Filename-Length);
TextJo.Get-Line (Infile, Derivative-Filename, Derivative -Length);
Textio.Get-Line (Infile, Aipha-Filename, Alpha-Length);
Textio.Get-Line (Infile, Output-Filename, Outname-Length);
Textdo.Get-Line (Infile, Diff-Filename, Diff-Length);
Textdo.Get-Line (Infile, Info-Filenamne, Info-Length);
Integer-lo.get (InfilePoints);
Integer-lo~get (Infile,Number-Of-Partitions);

Textdo.Create(Infofile, Textdo.Out-File, Info-Filename(1. .Info-Length));

Text~o.put (Infofile,"This information describes the outputs");
Textio~put (Infofile," produced from prepared data file =")
Textio.Put-Line (Infofile,In-Filename(1. .In-Filename-Length));
Textdo.New-Line (Infofile);

Textio~put (Infoille, "Input Data Filename >")
Textio. Put-Line (Infofile, Data-Filename( 1.. Data-Filename-Length));
Textlo.New-Line (Infofile);

Text Jo. put (Infofile, "Derivative Filename=

Text Jo. Put Line (I nfofile, Deri vative-Filename (1.. Derivative-Length));
Textio. New..Line(Infofile);

Textio. put (Infofile, "Alphas Filename
TextJo. PutLine(Infofile,Alpha-Filename(1. .Alpha-Length));
Textio.New-Line(Infofile);

Text~o. put (Infofile, "Output Data Filename=
TextJo. PutLine(Infofile,Output-Filename(1. .Outname-Length));
TextJo.New-Line(Infofile);

Text Jo. put (Infofile, "In Out Difference Filenamne=
Textio. Pt-Line(Infofile,Diff-Filename(1.. Diff-Length) 'I;

Text Jo. New-Line(I nfofile);

Text-lo. put (Infofile, "Number of Data Points
Integer-lo. put(Infofile, Points, 1);
Text Jo. New-Line(lnfofile); Textdo. New-Line(Infofile);

Text-lo. put (lnfofile, "Number of Partitions = )
Integer-Io.put(Infofile,(Number-OLPartitions + 1),l1);
Text -o.New-Line(lnfofile);

for jin 1..Number-0f..Partitions loop
Integer-lo.get (Infile, Parti tions(j). Bou ndary);
Integer-lo.get ( nfile, Partitions(j). Overlap);

end loop;
Text Ao.Close( Infile);

-- now I call in the numbers for the vcctor Data
Text Jo. Open (Datafile,Textdo. In -ile, Data-Filename(1. .Dat~a-ilename-Length ));
for j in L.Points loop
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Integer Io.Get (Dat afile,Temp-dnput);
Data(j) := float(TempInput); - - !or integer inputs

end loop;
TextIo.Close(Datafile);

Partitions(O).Boundary := 1;
Partitions(O).Overlap := 0;

Partitions(NumberOf-Partitiotis + 1).Boundary Points + 1;
Partitions(NumberOf-Partitions + 2).Boundary Points + Partitions(1).Boundary;
Partitions(NumuerOfPartitions + 1).Overlap 0;
Partitions(NuinberOfPartitions + 2) Overlap 0;

NumberOfPartitions := Number-OfPartitions + 2;

- - write the first partition to the end of the data file
- - for wrap around processing

Counter := 1;
for j in (Points + 1)..(Points + Partitions(1).Boundary) loop

Data(j) Data(Counter);
Counter Counter + 1;

end loop;

Points := Points + Partitions(1).Boundary;

epd GetFileData;

- MultiplyByWindow

procedure Multiply.ByWindow ( FullDataSegment in Real-Vector;
Folded-InData in out Real-Vector;
Window.j in out Real-Vector) is

Pi constant 3.141592654;
EPSILON.j integer Folded-InData'first - FullData-Segment'first;
EPSILON j-plus-I integer FullDataSegment'last - FoldedInData'last;
A-i :integer FoldedIn_-Data'first;
A.j.plusI integer FoldeaInData'last;
WindowBoundaryValue constant float := 1.0/sqrt(2.0);

begin

- - This is the basic window - also need complex window
CREATE WINDOW-

- - Window defined in Section 2.1.2.1, equation 2.8.

- - left rising edge
if EPSILONj = 0 then

Window.j(A-j) := WindowBoundaryValue;
else

for x in (Aj - EPSILON J)..(Aj + EPSILON.j) loop
Window-j(x) := sin((Pi/(4.0*float(EPSILONj))) • (float(x-(A _j-EPSILON -j))));

end loop;
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end if;
- - center
for x in (A4j + EPSILON.j + I)..(A..j-plus-I - EPSILON .j..plusi - 1)
loop

Window-j(x) :=1.0;
end loop;

- - right falling edge
if EPSILON-j..plusil = 0 then

Window - (A..j..plusi1) :=Window-Boundary-Value;
else

for x in (A..j-plus-I - EPSILON-j-plus-1).. (A4.-plus-I + EPSILON-j-plus-1) loop
Window-j(x), := cos((Pi/(4.0*float(EPSILON-jplusi1))) *

(float (x-(A..j-plus-l -EPSILON-j-plus-1))));
end loop;

end if;

-_Multiply By Window-
for x in (A-j)..(A.j + EPSILONij) loop

Folded Jn..Data(x) :=Full-Data..Segment(x) * Window4j(x) -

Full-Data..Segment(2*A-j - x) * Window-j(2*A..j -x)

end loop;

for x in (A-j + EPSILON..j + 1)..(A..j-plus-I - EPSILON -j-plus-1 - 1) loop
Folded In-Data(x) :=Full Data..Segment (x) * Window-&x);

end loop;

for x in (A-j-plus-I - EPSILON j..plusi1).. (A-jplusi1) loop
Folded-In-Data(x) :=Full-Data..Segment(x) * Window-j(x) +

Full-Data-Segment(2*A..j-plus-1 - x) * Window-j( 2*A.j-.plusi1 X-
end loop,

end Multiply-By-Window;

-- Compute-Coefficients

- This procedure takes in data from 0 - N or A-j - A-j+1 (N+1 points) and
-- returns coefficients stored from 0 - N-1 or A-j - (A4j+l - 1) (N points)
-- Nth point is used in calculations but is not a valid out point

_ It will be used to store the zero'th coefficient in the next data segment

procedure Compute-Comfficients ( Data-Scgment in out Real-Vector;
Deriv-Output in out Textio.File-Type) is

Two-N integer 2 * (Data-6egrnent'length - 1);
End-FFT-Data integer Data-Segment'first + Two-N - 1;
FFT-Data Complex-Vector(Data-Segment'first..End-FFT-Data);

A-5



begin
- (1) Even Extend Data-Segment

S- (See Vector.Package-ComplexPackage and Section 2.1.2.4, Step 5).

FFTData := ComplexOf(Even-Extend(DataSegment));

- - (2) Perform Inverse FFT (See FFTPack and Section 2.1.2.4, Step 6).
FFT (FFTData, True); - - includes 1/N scaling

for x in DataSegment'range loop

Float io.put (DerivOutput, FFTData(x).real);
TextIo.NewLine(DerivOutput);

end loop;

- - (3.a) Assign zero coefficient to first point in Data-Segment.

DataSegment(DataSegment'first) := FFTData(FFTData'first).Real * sqrt(float(TwoN));

- - (3.b) Assign coefficients 1 to N-i back to Data-Segment after integration

- - (See Section 2.1.2.4, Step 7).
for k in (DataSegment'first + 1)..(DataSegment'last-1) loop

DataSegment(k) := DataSegment(k-1) + (2.0 * sqrt(float(TwoN)) * FFTData(k).Real);
end loop;

end ComputeCoefficients;

- - Reconstruction FFT

procedure Reconstruct ionFFT ( InputData : in Real-Vector;

Output-Data : out Real-Vector ) is

Pi constant 3.141592654;
X float 0.0; - -- float counter
Scale-Factor,

Complex-Factor Complex;

TwoN integer 2 * InputData'length:
TwoNFloat float float(TwoN);
EndFFTData integer InputData'first + TwoN - 1;

FF'T_Data ComplexVector(In put _Data'first..EndFFTData);

begin

(1) Odd Extend InputData

- - (See VectorPackage, Complex-Package and Section 2.1.3, Step 1).

FFTData := ComplexOf(Odd_Extend(Inpu tData));

- - (2) Perform Inverse FFT (See FFTPack and Section 2.1.3, Step 2).

FFT(FFTData, True);

X := 0.0;
Scale-Factor.real := sqrt(TwoN_-Float);
ScaleFactor.imag := 0.0;

for I in OutputData'range loop
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Complex-Factor.real := Cos(Pi*X/TwoN -Float);
ComplexFactor.imag := Sin(Pi*X/TwoNFloat);
FFTData(l) := Scale-Factor * Complex-Factor * FFTData(I);
X := X + 1.0; - - float counter

end loop;

- - assign scaled imaginary part to Output-Data 1..N
for 1 in OutputData'range loop

OutputData(l) := FFTData(l).imag;
end loop;

end Reconstruction-FFT;

- - DivideByWindows (See Section 2.1.3, Step 3).

procedure DivideByWindows ( Data-Segment in out RealVector;
Window-Right in Real-Vector;
Boundary-Point: in integer ) is

Counter integer := 0;
Window-Left Real-Vector(WindowRight'range);

TempDataSegment Real-Vector(DataSegment'range) := Data-Segment;

begin

Window-Left := Reverse-Assignment(WindowRight);

- - Calculate DataSegment(A-j - ej .. A_j - 1)
Counter := WindowRight'last;
for i in (WindowRight'first)..(BoundaryPoint-1) loop

DataSegment(i) := WindowLeft(i) * TempDataSegment(i) -
Window-Left(Counter) * TempDataSegment(Counter);

Counter := Counter - 1;
end loop;

- - Calculate DataSegment(A4j)
DataSegment(BoundaryPoint) := TempDataSegment(BoundaryPoint) /

(2.0 * WindowLe't(BoundaryPoint));

- - Calculate DataSegment(A-j + I .. A.j + e.j - 1)
Counter := Boundary-Point;
for i in (Boundary-Point + 1)..(WindowRight'last - 1) loop

Counter := Counter - 1;
DataSegment(i) := WindowRight(Counter) * TempDataSegment(Counter) +

WindowRight(i) * TemupDataSegment(i);
end loop;

- - Calculate DataSegment(A.j + e-j .. Aj-1 - e-j-1)
. for i in WindowRight'last..TempDataSegment'last loop

- - DataSegment(i) := TempDataSegment(i);
- - Window values here are unity so no action required
- - If different scaling was required this would have to be
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- - rewritten - best way would be to pass in another slice
- - from window and giving it a new name as input to DivBy-Win

- - end loop;

end DivideBy.Windows;

- - DoWork

procedure Do-Work ( Data in Real-Vector;
Partitions in Partition-Vector;
DerivfileString : in String;
AlphafileString in String;
Outfile.String in String;
DiffFileString : in String;
Infofile :in out Textio.FileType) is

Pi : constant := 3.141592654;

Transformed-Data , T-Data : RealVector(Data'range);
Output-Data : RealVector(Data'range);
Window : RealVector(Data'range);
Median-Data, Median2_Data : RealVector(Data'range);

Start-Data, End-Data, - - Aj and Aj+l
StartWindow, End-Window, - - A_j - e.j and A_j+I + ej+l
LastOutputPoint, - - Aj+I - e-j+l
LastWindowPoint, - - A_j + e-j
Counter,
Alpha-CompressionCounter : integer := 0;
TwoN,
TempNthValue : float := 0.0;
- - Used because Nth value needed in two intervals
- - and otherwise would be overwritten
Derivfile,Alphafile,

Outfile, DiffFile : TextIo.File-Type;
Alpha-Threshold : float : 0.0;
PercentRemaining : float := 0.0;

begin
Text-lo.Create (Derivfile, Text-Jo.OutFile, DerivfileString);
Textlo.Create (Alphafile, Text Jo.OutFile, Alphafile.String);
Textio.Create (Outfile, TextJo.Out-File, OutfileString );
TextJo.Create (DiffFile, Text-o.Out-File, Diff-fileString);

Text-lo.NewLine;
- - This threshold is optional depending on the application
Text-Jo.put("What is the desired coefficient threshold ? ");
FloatJo.get(AlphaThreshold);
Text Jo. NewLine;

for j in 0..(Partitions'last-l) loop

begin - - cach segment is transformed within this loop

A-8



-Assign j Dependent Values

Start-Data Partitions(j). Boundary;
End-Data Partitions(j+1).Boundary;
Start-Window Partitions(j).Boundary - Partitions(j). Overlap;
End-Window Partitions(j+ 1).Boundary + Partitions(j+ 1).Overlap;

TwoN := float(2 * (EndData-StartData));

LastOutputPoint End-Data - Partitions(j l+1).Overlap - 1;
LastWindowPoint Start-Data + Partitions(j). Overlap;
TempNthValue := TransformedData(EndData);

Text_!o.put("Working.... Processing Data Segment");
Integerlo.put(j+l);
TextIo.NewLine;

MultiplyBy-Window ( Data(Start-Window..End-Window),
TransformedData(StartData..EndData),
Window(StarLtWindow..EndWindow));

- - Steps 2 and 3 of Coefficient Evaluation (Section 2.1.2.4).

- - Window added as passed parameter only so
- - it does not have to be recalculated

- - in DivideByWindows

Counter := 0;
for I in Start-Data.. End.-Data loop

TranstormedData(1) := TransformedData(l) * sin((Pi * float(Counter))/(TwoN));
Counter := Counter + 1; - - Counter goes from 0 to N

end loop;

- - Step 4 of Coefficient Evaluation (Section 2.1.2.4).

Compute-Coefficients ( TransformedData(StartData..EndData),
Derivfile);

- - This routine performs
- - (1) an even extension of the data,
- - (2) an inverse FFT,
- - (3) assigns coefficients 0 - N-I to Transformed-Data
- - Steps 5, 6, and 7 of Coefficient Evaluation (Section 2.1.2.4).

_-- -Print Alphas for each segment to file

for x in Start_-Data..(End-Data-1) loop
float io.put(Alphafile,TransformedData(x));
text io.newline(Alphafile);

end loop;

Transformed_-Data(EndData) := TempNthValue;
- - Transformed_-Data will not be changed again in
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- - this loop. This assignment replaces the Nth value
- - back to TransformedData so it can be used
- - as the Start-Data point in the following segment

ReconstructionFFT ( Transformed_-Data
(StartData..(EndData-1)),
OutputData((StartData+1)..EndData));

- - This routine performs
- - (1) an odd extension of the data,
- - (2) an inverse FFT,
- - (3) assigns the scaled imaginary result to
- - the Output-Data values 1 - N or A-j + 1 to Aj+1

- - This indicates that data values 0 - N
- - create alphas from 0 - N-1 which in turn are used
- - to reconstruct data values from 1 - N
- - WOW !!!

- - Steps 1 and 2 of Reconstruction (Section 2.1.3).

DivideByWindows ( OutputData(StartWindow..LastOutputPoint),
Window(StartWindow.. LastWindowPoint),
Partitions(j). Boundary);

if j= (Partitions'last - 1) then
begin

Counter := 1;
for k in Start-Data..LastWindowPoint loop

OutputData(Counter) := OutputData(k);
Counter := Counter + 1;

end loop;
end; - - block

end if;

end; - - block

end loop; - - j loop

Textio.Close(Alphafile);

Textio.PutLine("Printing output to file...");

for x in Partitions(0).Boundary..(Partitions(Partitions'last - 1).Boundary - 1) loop
Integer-Jo.put(Outfile,(Integer(OutputData(x))));
Text-_o. NewLine(Outfile);
IntegerJo.put(DiffFile,(Integer(Output-Data(x) - Data(x))));
TextIo.NewLine(DiffFile);

end loop;

Textio.New-Line(Infofile);
Textio.put(Infofile,"The threshold was

Float io.put (Infofile,AlphaThbreshold,2,2,0);
Text io.NewLine(Infofile);Text._io. NewLine(Infofile);
TextJo.put(Infofile,"No. of zeroed coefficients was ");
Integer-io.put (Infofile,AlphaCompressionCounter,2);
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Text-io. New-Line(Infofile) ;Text-io. New-Line(Infofile);
Text -io. put (Infofile, "The Percent Rem ai ning :=100.0 * (1.0 -

(float(Alpha-Compressioru-Counter) /
float((Partitions( Partitions'last- 1). .Boundary - 1))));

Float io.put(Infoflle, Percent Remaining, 2,5, 0);
Text -o. New-Line(Infofile);

Textlo.Close(Outfile);
Text Jo. Close (Diff-File);

Text-lo. New-Line;
Float-Io.put(Alpha-Threshold,3,5,0);
Text-Io.New-Line;
Integer-lo. put (Alpha-Compression-Counter,3); Textio. New-Line;
Float Jo. put (Percent Remaining, 3,5, 0);
Text-Io. New-Line;

end Do-Work;

begin - - main

Get-File..Data ( Deriv-Namne, TDeriv-Name-Length,
Alpha-Name, Alpha.Name-.Length,
Outfile-Namne, Outfile-Name-Length,
Difference-Name, Difference-Name-Length,
Info-File,
BigJIaddy-Partition-.Vector, Actual-Partitions,
Big-Daddy..Data-Vector, Actual-Data-Length);

-- By sending the correct size arrays into Do-Work, the array
-- attributes can be used to determine the size rather than
-- passing another parameter

Do-Work ( Big..Daddy-Data-Vector(l1. .Actual Data-Length),
Big..fladdy -Partition -ector (0. .Actual-Partitions),
Deriv..Name(1. .Deriv-Nane-Length),
Alpha-Name(1. .Alpha-Name-Length),
Outfile-Name(1. .Outfile-Name-Length),
Difference-Name(1 ..Difference-Name-Length),
Info-ille);

end; - main
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A.2 Package Type-Package

package Type-Package is

type Complex is
record

Real : float;
Imag : float;

end record;

type PartitionRecord is
record

Boundary : integer;
Overlap : integer;

end record;

type PartitionVector is array (integer range <>) of Partition-Record;

- - PartitionNector is an array of Records

- - Each record specifies the boundaries
- - and the number of points of overlap

type Direction is (Increasing, Decreasing, Undefined);
type Phase-Type is (Pos, Neg, Zero);
type Phase-Vector is array (integer range <>) of Phase-Type;
- - used only for polynomial fit compression technique outlined in Section 4.6.3

type Real-Vector is array (integer range <>) of float;
type Complex-Vector is array (integer range <>) of Complex;

- - By using an unconstrained arrays <> I will be able to
- - pass array slices in and out of procedures which are sub-
- - procedures to Do-Work. The only arrays global to the
- - entire program are Big-DaddyDataVector and
- - BigDaddy_-PartitionVector
- - All other arrays are slices tailored to user
- - input in Get-Parameters.

end Type-Package;

,4.3 Package FFTPack

The code for the FFT Package specification and body are contained in Appendix A.

A.4 Package Vector-Package

A .4.1 Vector-Package Specificatiorn

with Textdo;
with Type-package;
use Type-Package;
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with ComplexPkg;
use ComplexPkg;

package vector-package is

function OddExtend(InVector : in Real-Vector) return Real-Vector;

function EvenExtend(In Nector : in Real-Vector) return Real-Vector;

function Reverse-Assignment ( In-Vector : in Real-Vector) return Real-Vector;

end vector-package;

A.4.2 Vector-Package Body

package body vector-package is

package integerio is new text io.integerdio(integer);

function Even_-Extend(InNector : in Real-Vector) return Real-Vector is

- - See Section 2.1.2.4, Step 5.

TwoN integer 2 * (InVector'length -1);
EndExtendedData integer InVector'first + TwoN - 1;
Extended-Data RealVector (InVector'first.. EndExtended-Data);
Counter integer := InVector'last - 1;

begin
Extended. Data(ExtendedData'first..In_Vector'iast) := In-Vector;
for i in (InVector'last + 1)..ExtendedData'last loop

ExtendedData(i) InVector(Counter);
Counter Counter - 1;

end loop;

return Extended-Data;

end Even-Extend;

function OddExtend(InVector : in Real-Vector) return ReaiVector is

- - See Section 2.1.3, Step 1.

TwoN integer 2 * InVector'length;
End-Extended_-Data integer InVector'first + TwoN - 1;
Extended-Data RealVector(InVector'first..End-ExtendedData);
Counter integer := InVector'last;

begin
ExtendedData(ExtendedData'first..InVector'Iast) := In-Vector;
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for i in (InVector'last + 1)..ExtendedData'last loop

ExtendedData(i) := - InVector(Counter);
Counter := Counter - 1;

end loop;

return Extended-Data;

end Odd-Extend;

function ReverseAssignment(In-Vector : in RealVector) return Real-Vector is

Counter integer := In-Vector'first;
Reversed-Vector RealVector(InVector'range);

begin
for y in reverse InVector'range loop

ReversedVector(Counter) InVector(y);
Counter := Counter + 1;

end loop;

return ReversedVector;
end Reverse-Assignment;

end vector-package;

A.5 Package ComplexPkg

A.5.1 ComplexPkg Specification

with Type-Package;
use Type-Package;

package ComplexPkg is

- - arithmetic operations

function "+" ( A,B Complex) return Complex;
function "-" ( AB Complex) return Complex;
function "" A,B Complex) return Complex;
function "*" ( R float;

C Complex) return Complex;

function "T" ( A Complex;
B float) return Complex;

function "/" ( AB Complex) return Complex;
function Negative (A : Complex) return Complex:

- - conversion operations

function Complex-Of (R,I : float) return Complex;
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function Complex-Of (RVector : RealVector) return Complex-Vector;
function Complex-Of (R : float) return Complex;
function Conjugate (A : Complex) return Complex;
procedure Set-Equal ( A : in Complex; B out Complex);

- - I/O operations

procedure Get (A out Complex);
procedure Put (A in Complex);

end ComplexPkg;

A.5.2 ComplexAPkg Body

with MathLib;

use MathLib;
with TextIo;

use Textio;

package body ComplexPkg is

package Fltlo is new Floatdo(float);
use Flt-o;

function "+" (A,B : Complex) return Complex is

Result : Complex;
begin

Result.Real := A.Real + B.Real;

Result.Imag:= A.Imag + B.Imag;

Return Result;
end "+";

function "-" (A,B : Complex) return Complex is

Result : Complex;
begin

Result.Real A-Real - B.Real;
Result.lmag A.Imag - B.Imag;
Return Result;

end "-"

function "*" (A,B : Complex) return Complex is
Result : Complex;

begin
Result.Real (A.Real*B.Real) - (A.Inag*B.Imag);
Result.Imag (A.Real*B.Imag) + (A.Imag*B.Real);
Return Result;

end "*";

function "*" (R : float; C Complex) return Complex is
Result : Complex;

begin
Result.Real R * C.Real;
Result.lmag R * C.Imag;
Return Result;

end "
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function "/" (A : Complex; B : float) return Complex is
Result : Complex;

begin
Result.Real := A.Real / B;
Result.Imag:= A.Imag / B;
Return Result;

end "/T;

function "/" (A,B : Complex) return Complex is
Result : Complex;
Squares : float;

begin
Squares := A.Real ** 2 + B.Imag ** 2;
Result.Real (A.Real * B.Real + A.Imag * B.Imag) / Squares;
Result.Imag (A.Imag * B.Real - A.Real * B.Imag) / Squares;
Return Result;

end "/"/;

function Negative (A : Complex) return Complex is
Result : Complex;

begin
Result.Real -A.Real;
Result.Imag -A.Imag;
Return Result;

end Negative;

function Complex-Of (R,I : float) return Complex is
Result : Complex;

begin
Result.Real R;
Result.Imag I;
Return Result;

end Complex-Of;

function Complex-Of (RVector : Real-Vector) return Complex-Vector is
Result: ComplexVector(R-Vector'range);

begin
for i in R.Vector'range loop

Result(i).Real RVector(i);
Result(i).Imag 0.0;

end loop;
Return Result;

end ComplexOf;

function Complex-Of (R : float) return Complex is
Result : Complex;

begin
Result.Real = R;
Result.Imag = 0.0;
Return Result;

end Complex-Of;

function Conjugate (A : Complex) return Complex is
Result : Complex;

begin
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Result.Real A.Real;
Result.Imag - A.Imag;
return Result;

end Conjugate;

procedure Set-Equal ( A : in Complex; B out Complex) is
begin

B.Imag:= A.Imag;
B.Real := A.Imag;

end Set-Equal;

procedure Get (A : out Complex) is
begin

Get(A.Real);
Get(A.Imag);

end Get;
procedure Put (A : in Complex) is

begin
Put ("(");
Put (A.Real, 1,2,0);
Put (",");
Put (A.Imag,5,2,0);
Put(")");

end Put;

end ComplexPkg;
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Appendix B. Polynomial Fit Compression Technique Code

The following procedures were added to support the polynomial fitting compression

technique described in Section 4.6.3.

B. 1 Procedure MaximaMinima

procedure Maxima-Minima ( Data in out Real-Vector;
Threshold in float;
First.PosMaxima,
FirstNegMaxima,
LastPos-Maxima,
LastNegMaxima in out integer;
Phase out Phase-Vector) is

FirstPosLoop, FirstNegLool, boolean := true;
PosSlope, NcgSlope Direction := Undefined;
LastPosPointSaved,
LastNegPointSaved,
LastPosPointConsidered,
Last-NegPointConsidered integer 0;
First _TripThroughPosDecreasingSlope,
FirstTripThroughNeg-IncreasingSlope boolean true;

begin
First-PosMaxima 0;
FirstNegMaxima 0;
- - These values are set to zero to bt used in this procedure
- - to keep track of the status of First* and Last*
LastPosMaxima 0;
LastNegMaxima 0;
- - These values are set to zero for each segment so they can be checked
- - upon exit from Maxima-Minima and used as a decision basis for
- - reconstructing using polynomials

for j in Data'range loop

begin - - loop
if Data(j) > Threshold then

begin - - positive values

Phase(j) := Pos;

if PosSlope = Increasing then
if Data(j) > Data(LastPosPointConsidere 1) then

Data(LastPosPointConsidered) := 0.0;
LastPos_ -C,•tonsidered := j;

else
LastPosPointSaved := LastPosPointConsidered;
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Last-PosPointConsidered := j;
PosSlope := Decreasing;
if FirstPosMaxima/= 0 then

LastFosMaxima LastPosPoint-Saved;
- - if this point in the algorithm is entered at least
- - once LastPos-Maxima will change from zero •o the
- - appropriate number and polynomial reconstruction
- - will take place on the positive coefficients.
- - This ocurrs when the slope changes from increasing
- - to decreasing.

end if;
end if;

elsif PosSlope = Decrta-ing then
if FirstPosMaxima = 0 then

FirstPosMaxima = LastPosPointSaved;
end if;
if Data(j) < Data(LastPos-PointConsidered) then

Data(LastPosPointConsidered) := 0.0;
LastPosP•,mtConsidered := j;

else
LastPosPointSaved := LastPosPointConsidered;
LastPosPointCcnsidered := j;
PosSlope := Increasing;

end if;

elsif PosSlope = Undefined then - - 1st or 2cd pos loop
if FirstPosLoop then - - 1st pos loop

LastPosPointSaved :=j;
FirstPosLoop := false;

,1se - - 2cd pos loop
if Data(j) > Data(Last_Pos_Pointiaved) then

PosSlope := Increasing;
else

PosSlope := Decreasing;
end if;
LastPosPoin tConsidered j;

end if;
end if; - - Po6 Slope

end; - - block for positive vlues

elsif Data(" < -Threshold then

begin - - negative values

Phase(j) := Neg;

if N(_,Slope = Increasing then

if FirstNeg-Maxima - 0 then
FirstNegMaxima := Last,_Ncg_PointSaved;

end if;

if Data(j) > Data(Last-NegPointConsidered) then
Data(Last-Neg-Point-Considered) := 0.0;
LastNegPointConsidered := j;

else
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LastNegPointSaved := LastNegPointConsidered;
LastNegPointConsidered := j;
NegSlope := Decreasing;

end if;

elsif NegSlope = Decreasing then
if Data(j) < Data(LastNeg-PointConsidered) then

Data(LastNeg-PointConsidered) := 0.0;
Last-NegPointConsidered := j;

else
Last-NegPoint-Saved := Last-Neg-PointConsidered;
Last-NegPointConsidered := j;
Neg.Slope := Increasing;
if First.NegMaxima /= 0 then

LastNegMaxima:= LastNegPointSaved;
- - See comment above in positive values algorithm.

end if;
end if;

elsif Neg-Slope = Undefined then - - 1st or 2cd neg loop
if FirstNegLoop then - - 1st neg loop

LastNegPointSaved := j;
First-NegLoop := false;

else - - 2cd neg loop
if Data(j) > Data(LastNegPointSaved) then

NegSlope Increasing;
else

Neg-Slope := Decreasing;
end if;
LastNegPointConsidered j;

end if;
end if; - - Neg Slope

end; - - block for negative values

else
Data(j) 0.0;
Phase(j) Zero;

end if;

end; - - block

end loop;
end Maxima-Minima;
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B.2 Procedure Fit-Slice

- - Fit-Slice

procedure Fit-Slice (Data-Segment in out Real-Vector;
Phase-Segment in Phase-Vector;
fxlkPosition in integer;
Correct-Phase in Phase-Type;
Thresh in float ) is

fx0 float DataSegment(DataSegment'first);
fxl float Data-Segment(fxlPosition);
fx2 float DataSegment(DataSegment'last);

AlphaO float fxO;
- - Either fxO or AlphaO could be eliminated
- - but both are provided for clarity
Alphal,
Alpha2 float; - - To be calculated;

xl float float(fxlIposition - Data.Segment'first); - - xO = 0
x2 float float(DataSegment'last - DataSegment'first);
x float := 1.0; - - floating loop variable
Factor float 1.0;

begin

Alpha2 ( fx2 - fx0 - (x2/xl*(fxl-fx0)) / (x2*(x2-xl))
Alphal ( fxl - fx0 - (Alpha2*xl*xl) ) / xl ;

for j in (DataSegrnent'first+l)..(DataSegment'last-1) loop
if PhaseSegment(j) = Correct.Phase then

DataSegment(j) := AlphaO + (alphal*x) + (Alpha2*x*x)
- - Check to ensure polynomial fit is not out of allowable range
if Correct-Phase = Pos then

if DataSegment(j) < Thresh then
DataSegment(j) := Thresh;

end if;
else - - Correct-Phase = Neg then

if DataSegment(j) > -Thresh then
DataSegment(j) :=-Thresh;

end if;
end if;

end if;
x := x + 1.0; - - x will always j - DataSegment'first

end loop;

end Fit-Slice;
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B.3 Procedure PolynomiaLFit

- - PolynomialFit

procedure Polynomial-Fit (Data in out Real-Vector;
FirstPosMaxima,
FirstNegMaxima,
LastPosMaxima,
LastNegMaxima in integer;
Phase : in Phase-Vector;
Threshold . in out float ) is

- - Threshold is passed in only to be used in Fit-Slice

Start : integer FirstPosMaxima;
Middle, Endslice . integer 0;
TheLastPointSavedWasAMin boolean false;

begin

if LastPosMaxima /= 0 then
begin - - positive reconstruction is valid

for x in (FirstPosMaxima+1)..LastPosMaxima loop
if Data(x) > 0.0 then

- - then the point is either a min or a max

if TheLastPointSavedWasAMin then

Endslice := x;
FitSlice(Data(Start.. Endslice),

Phase(Start.. Endslice),
Middle, Pos, Threshold );

TheLastPointSavedWasAMin false;
Start := Endslice;

else - - else the last point
Middle := x; - - saved was a max
TheLastPointSavedWas..AMin := true;

end if;

end if;
end loop; - - positive reconstruction loop

end; - pos recon valid block
end if;

- - Now handle negative polynomial reconstruction
TheLastPoint.SavedWasA-Min := false; - - re-initialize
Start := FirstNegMaxima;

if LastNegMaxima /= 0 then
begin - - negative reconstruction is valid

for x in (FirstNegMaxima+l)..LastNegMaxima loop
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if Data(x) < 0.0 then
- - then the point is either a min or a max

if TheLastPointSavedWasAMin then
Endslice:= x;
Fit -Slice(Data(Start..Endslice),

Phase(Start..Endslice),
Middle, Neg , Threshold );

TheLastPointSavedWas.AMin false;
Start .= Endslice;

else - - else the last point
Middle := x; - - saved was a max
TheLastPointSavedWasA_-Min := true;

end if;

end if;
end loop; - -- negative reconstruction loop

end; - - neg recon valid block
end if;

end PolynomialFit;
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Appendix C. Independent Interval Processing Code Modifications

The following procedures replace those given in Appendix A for implementation of

the independent interval processing outlined in Sections 2.3 and 4.3.6.

C. 1 GetFif-Datla

--GetFileData prompts the user for the prepared info file name
- - and then reads in the data in the following order
- -- (1) Input Data Filename

(2) Derivative Output Filename
- (3) Alpha Output Filename
- (4) Output Data Filename

- - (5) Input Output Difference Filename
- - (6) General Info Filename

- (7) Number of Points in the Data Vector
-- - (8) Number of required partitions

- (9) - (?) loop for input given in (8) and get
- Boundary point then Overlap for each partition

- All code in Procedure GetFileData remains the same except the code
following the Datafile input loop which assignes the data to vector Data

Partitions(0).Boundary := 1;
Partitions(O).Overlap := 0;

Partitions( NumberOfPartitions + 1).Boundary := Points + 1;
Partitions( NumberOfPartitions + I).Overlap := 0;

Numb, rOf-Partitions := Number-OfPartitions + 1;
Points := Points + Partitions(NumberOfPartitions).Overlap + 1;

end GetFileData;
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C.2 DivideBy Windows

- - Divide-By_-Windows (See Section 2.1.3, Step 3).

procedure DivideByWindows ( DataSegment in out Real-Vector;
Window in Real-Vector;
AJ in integer ) is

Counter integer := 0;
TempDataSegment RealVector(DataSegment'range) Data-Segment;
EJ integer AJ - DataSegment'first;
AJplusl integer DataSegment'last - EJ;

begin

- - (1) boundary
DataSegment(AJ) := TempData-Segment(AJ) / (2.0 * Window(AJ));

- - (2) left overlap
Counter := AJ;
for i in (AJ + 1)..(A.] + EJ - 1) loop

Counter := Counter - 1;
DataSegment(i) := Window(Counter) * TempData-Segment(Counter)

+ Window(i) * Temp-Data-Segment(i);
end loop;

- - (3) middle
- for i in ((AJ + EJ)..(AJplusl - EJ)) loop

--DataSegment(i) := TcinpDataSegment(i);
- - Window values here are unity so no action required
- - If different scaling was required this would have to be
- - accounted for

- - end loop;

- - (4) right overlap
Counter := Data-Segment'last;
for i in ((AJplusl - EJ + I)..(AJplusl - 1)) loop

Counter := Counter -1;
DataSegment(i) := Window(i) * TempDataSegment(i) -

Window(Counter)*TempDataSegmnent(Counter);
end loop;

end DivideByWindows;
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C.3 Do- Work

-- Do-Work

procedure Do-Work (Data in Real-Vector;
Partitions in Partition Nector;
Derivfile.String in String;
Alphafile-String in String;
Outfile-String in String;
Diff-File-St ring in String;
Infofile in out Text-do.File-Type) is

Pi constant :=3.141592654;

Transformed-Data Real Vector( Data'range);
Window Real -ector(Data'Tange);

aj, aj..plusl, ej,
ajless..ej, aj-plusliess-ej,
aj-plus-ej, aj..-plus I plus-ej,
Counter,
Al pha-Compression.-Counter integer :=0;
Two-N,
Temp-Nth-Value float :=0.0;

Derivfile,Alphafile,
Outfile, DifL-File TextJo. File-Type;
Two-N,
Alpha..Thresbold,
Percent-Reniaining float .= 0.2;

begin
Textio.Create (Derivfile, Textdo.Out-File, DeriVfile..String);
Text-lo.Create (Aiphafile, Text-io.Out-File, Alphafile..String);
Text-IOCreate (Outfile, Textio.Out-File, Outfile.String );
Textio.Create (Diff.File, Text Jo. Out-File, Diff-file..String);

Textilo. New-Line;
Text -o. put("What is the desired absolute threshold ?")
Floatio.get(Alpha-Threshold);
Textio. New-.Line;

for j in 0.. (Partitions'last-l1) loop

begin - - each segment is transformed within this loop

-------- Assign j Depend..,t Values------

ej :=Partitions(j).Overlap;
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aj Partitions(j). Boundary;
aj-plus.ej aj + ej;

ajJess&ej aj - ej;

aj.plusl Partitions(j+l).Boundary
aj-pluslless-ej aj-plusl - ej;
aj-plusl-plus-ej aj-plusl + ej;

TwoN float(2 * (aj-plusl-aj)):

TextIo.put("Working.... Processing Data Segment");
lntegerlo.put(j+ 1);

TextJo.NewLine;

TransformedData(ajiess.ej..aj- 1) Data(aj-plusl Iess-ej..aj-plus 1-1);

TransformedData(aj..aj-plusl-l) Data(aj..aj-plusl- 1);
Tran-formedData(aj-plusI..aj-plusl-plus-ej) := Data(aj..aj-plus-ej);

MultiplyByWindow ( Transformed_-Data(ajJess-ej..aj.-plusl _plus-ej),

Transformed-Data(aj..aj-plusl),
Window(ajJess-ej..aj.pluslplus-ej));

- - Steps 2 and 3 of Coefficient Evaluation (Section 2.1.2.4).

- - Window added as passed parameter only so

- - it does not have to be recalculated

- - in DivideByWindows

Counter := 0;
for I in aj..aj-plusl loop

TransformedData(I) := TransformedData(l)*sin ((Pi*float(Counter))/(TwoN));
Countcr := Counter + 1; - - Counter goes from 0 to N

end loop;

- - Step 4 of Coefficient Evaluation (Section 2.1.2.4).

Compute-Coefficients ( TransformedData(aj..aj-plusl),

Derivfile);
- - This routine performs

- (1) an even extension of the data,

- (2) an inverse FFT,
- - (3) assigns coefficients 0 - N-i to TransformedData
- - Steps 5, 6, and 7 of Coefficient Evaluation (Section 2.1.2.4).

-.... - .Print Alphas for each segment to file

for x in aj..(aj-plusl-1) loop

if abs(TransformedData(x)) < AlphaThreshold then

Transformed_-Data(x) := 0.0;
AlphaCompression -Counter := AlphaCompressionCounter+l;

end if;
Float io.put (Alphafile,Transformed_-Data(x));

Text io. Newliine(Al phafile);
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end loop;

Reconstruction.Y FT ( Transformed-flata( aj .. (aj -plus 1- 1)),
Transformed-Data( (aj± 1) .aj-plusl) )

Transformed -Dat a(aj Jess-ej.. .aj) :=Transformed -Data(aj-plusl1 -ess _ej. aj-plusl1);

Transformed-Data(aj -plus I+ I.. .aj-plusl pl usej) :=Transformed Data(aj +I1. .aj-pl us-ej);

Divide-By-Windows ( Transformed..Data(ajlJess-ej.. aj -plusl I plus.-ej),
Window (ajless~ej ..aj~pl usI plus.ej),
Partitions(j). Boundary);

for x in (aj..(aj..plusl-1)) loop
Integer-lo.put(Outfile,(Integer(Transformed-Data(x))));
Text-Io. Newiine(Outfile);
Integer-lo.put (DifL-File,(Integer(Transformned-Data(x) - Data(x))));
Text Jo. New-Line(DiffLFile);

end loop;
end; - - block

end loop;

Text-lo.Close( Aiphafile);
Textio.Glose(Outfile);
Text Jo. Close( Di ffFile);

Text-io. New-Iine(Infofile);
Text io. put (Infofile, "The threshold was >")
Float-io.piit(Infofile,Alpha-Threshold,2,2,0);
Text -o. New -ine(Infofile);Text io. New-Line(Infofile);
Text-io. put(Infofile, "Number of zeroed coefficients was >")
I nteger-io. put (Infofile, Alpha..Compression-Cou nter, 2);
Text io. New-Line(I nfofile);Text io. New-Line(I nfofile);
Text io. put (Infofile, "The % compression was >)
Percent-Remaining :=100.0 * (1.0 - (float (Al pha.Com pression -ounter)/

float (( Partitions( Parti tions'last- 1). Boundary - 1))));
Float-io. put (Infofile, Percent..Remaining,2,5,0);
Text io. New Line(Infofile);

Text Jo. NewLi ne;
F'oat Jo. put(A AIpha-Th reshold,3,5, 0);,
'fextio. NewJine;
Integer-lo. put( Alpha.Compression-.Cottnter,3);
Text Jo. New-Line;
FloatiJo. put(Percent..Remai ning, 3,5, 0);
Text Jo. New-Line;

end Do-W~ork;
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